Role of Penicillin-Binding Proteins in the Viability, Morphology, Stress Tolerance, and Pathogenicity of Clavibacter michiganensis

Author:

Chen Xing1,Bai Kaihong1,Lyu Qingyang12,Jiang Na1,Li Jianqiang1,Luo Laixin1ORCID

Affiliation:

1. Department of Plant Pathology, College of Plant Protection, China Agricultural University; Beijing Key Laboratory of Seed Disease Testing and Control, Beijing 100193, P.R. China

2. Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China

Abstract

Previous research has shown that penicillin-binding proteins (PBPs), enzymes involved in peptidoglycan (PG) assembly, could play an important role during the induction of the viable but nonculturable (VBNC) state, which allows non-spore-forming bacteria to survive adverse environmental conditions. The current study found that Clavibacter michiganensis has seven PBPs. Mutant analysis indicated that deletion of either of the class B PBPs was lethal and that the class A PBPs had an important role in PG synthesis, with the ΔpbpC mutant having an altered cellular morphology that resulted in longer cells that were swollen at one end and had thinner cell walls. The ΔpbpC mutant was also found to produce mucoid colonies in solid culture and a lower final cell titer in liquid medium, as well as having high sensitivity to osmotic stress and lysozyme treatment and surprisingly high pathogenicity. The double mutant, ΔdacB/ΔpbpE, also had a slightly altered phenotype, resulting in longer cells. Further analysis revealed that both mutants had high sensitivity to copper, which resulted in quicker induction into the VBNC state. However, only the ΔpbpC mutant had significantly reduced survivorship in the VBNC state. The study also confirmed that the VBNC state significantly improved the survivorship of wild-type C. michiganensis cells in response to environmental stresses and systemically demonstrated the protective role of the VBNC state in C. michiganensis, which is an important finding regarding its epidemiology and has serious implications for disease management.

Funder

Natural Science Foundation of China

The National Key Research and Development Program of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3