Author:
Parks Ryan,Carbone Ignazio,Murphy J. Paul,Cowger Christina
Abstract
The structure of the U.S. wheat powdery mildew population (Blumeria graminis f. sp. tritici) has not been previously investigated, and the global evolutionary history of B. graminis f. sp. tritici is largely unknown. After gathering 141 single-ascosporic B. graminis f. sp. tritici isolates from 10 eastern U.S. locations, 34 isolates from the United Kingdom, and 28 isolates from Israel, we analyzed pathogen population structure using presumptively neutral markers. DNA was extracted from conidia, primers for 12 “housekeeping” genes were designed, and amplicons were examined for polymorphism. Four genes were found to contain a total of 12 single-nucleotide polymorphisms in the U.S. population and were also analyzed in the U.K. and Israeli populations. In total, 25 haplotypes were inferred from the four concatenated genes, with 2 haplotypes comprising over 70% of the U.S. population. Using Hudson's tests and analysis of molecular variance, we found the wheat mildew isolates subdivided into four groups corresponding to distinct regions: the mid-Atlantic United States, the southern United States, the United Kingdom, and Israel. Genotypic diversity was greatest in samples from the United Kingdom, Israel, Virginia, and Kinston, NC. Using rarefaction, a procedure that compensates for differing sample sizes when estimating population richness and diversity, we found that cooler locations with greater conduciveness to regular powdery mildew epidemics had the greatest haplotype richness. Our results suggest that the eastern U.S. B. graminis f. sp. tritici population is young, descended recently from Old World populations with isolation and genetic drift, and is currently subdivided into northern and southern subpopulations.
Subject
Plant Science,Agronomy and Crop Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献