Production of Nitric Oxide and Nitrosylleghemoglobin Complexes in Soybean Nodules in Response to Flooding

Author:

Sánchez Cristina,Gates Andrew J.,Meakin Georgina E.,Uchiumi Toshiki,Girard Lourdes,Richardson David J.,Bedmar Eulogio J.,Delgado María J.

Abstract

Nitric oxide (NO) has gained interest as a major signaling molecule during plant development and in response to environmental cues. Formation of NO during symbiotic interactions has been reported, but the role and sources of NO in nodules remain unclear. In this work, the involvement of denitrification, performed by the symbiont Bradyrhizobium japonicum, in NO formation in soybean nodules in response to flooding conditions has been investigated by inoculating plants with napA-, nirK-, or norC-deficient mutants. Levels of nitrosylleghemoglobin (LbNO) in flooded nirK and norC nodules were significantly higher than those observed in wild-type nodules. In addition, nirK and norC nodules accumulated more nitrite and NO, respectively, than wild-type nodules. By contrast, levels of LbNO, nitrite, and NO in flooded napA nodules were lower than in wild-type nodules. These results suggest that LbNO formation in soybean nodules in response to flooding conditions is caused by nitrite and NO generated from periplasmic nitrate reductase (Nap) and also containing nitrite reductase (NirK) denitrification enzymes. Flooding caused a decrease of nifH expression and nitrogenase activity in wild-type and norC nodules but not in napA or nirK nodules. Incubation of wild-type and norC nodules with a NO scavenger counteracted the effect of flooding. Under free-living conditions, β-galactosidase activity from a nifD′-′lacZ fusion decreased in a norC mutant, which also accumulated NO in the medium. These results suggest that NO formed by Cu-containing nitrite reductase in soybean nodules in response to flooding has a negative effect on expression of nitrogenase. We propose that Lb has a major role in detoxifying NO and nitrite produced by bacteroidal denitrification in response to flooding conditions.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3