Characterization of Acquired Resistance in Lesion-Mimic Transgenic Potato Expressing Bacterio-Opsin

Author:

Abad Mark S.,Hakimi Salim M.,Kaniewski Wojciech K.,Rommens Caius M. T.,Shulaev Vladimir,Lam Eric,Shah Dilip M.

Abstract

The lesion-mimic mutants of certain plants display necrotic lesions resembling those of the hypersensitive response and activate local and systemic defense responses in the absence of pathogens. We have engineered a lesion-mimic phenotype in transgenic Russet Burbank potato plants through constitutive expression of a bacterio-opsin (bO) proton pump derived from Halobacterium halobium. Transgenic potato plants exhibiting a lesion-mimic phenotype had increased levels of salicylic acid and overexpressed several pathogenesis-related messenger RNAs, all hallmarks of systemic acquired resistance (SAR). The lesion-mimic plants also displayed enhanced resistance to the US1 isolate (A1 mating type) of a fungal pathogen, Phytophthora infestans, a causal agent of late blight disease. In contrast, little resistance was observed against the US8 isolate (A2 mating type) of this pathogen. Furthermore, a majority of the transgenic plants displaying the lesion-mimic phenotype had increased susceptibility to potato virus X. The tubers of these plants were not resistant to the bacterial pathogen Erwinia carotovora. These results indicate that expression of bO can result in the activation of defense responses in transgenic potato plants and show for the first time that bO expression can confer resistance to a pathogenic fungus. However, our results also demonstrate that like SAR, this “engineered” resistance is likely to be limited to certain pathogens and particular cultivars.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3