Resistance Gene Pyramiding and Rotation to Combat Widespread Soybean Cyst Nematode Virulence

Author:

Meinhardt Clinton1,Howland Amanda1,Ellersieck Mark2,Scaboo Andrew3,Diers Brian4,Mitchum Melissa G.15ORCID

Affiliation:

1. Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211

2. Agriculture Experiment Station Statistician, University of Missouri, Columbia, MO 65211

3. Division of Plant Sciences, University of Missouri, Columbia, MO 65211

4. Department of Crop Sciences, University of Illinois, Urbana, IL 61801

5. Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602

Abstract

Soybean cyst nematode (SCN) is an important pathogen of soybean causing >$1 billion in yield losses annually in the United States. Planting SCN-resistant soybean cultivars is the primary management strategy. Resistance genes derived from the plant introduction (PI) 88788 (rhg1-b) and PI 548402 (Peking; rhg1-a and Rhg4) are the main types of resistance available in commercial cultivars. The PI 88788 rhg1-b resistance allele is found in the majority of SCN-resistant cultivars in the north central United States. The widespread use of PI 88788 rhg1-b has led to limited options for farmers to rotate resistance sources to manage SCN. Consequently, overreliance on a single type of resistance has resulted in the selection of SCN populations that have adapted to reproduce on these resistant cultivars. Here we evaluated the effectiveness of rotating soybean lines with different combinations of resistance genes to determine the best strategy for combating the widespread increase in virulent SCN and limit future nematode adaptation to resistant cultivars. Eight SCN populations were developed by continuous selection of a virulent SCN field population (Heterodera glycines [HG] type 1.2.5.7) on a single resistance source or in rotation with soybean pyramiding different resistance gene alleles derived from PI 88788 (rhg1-b), PI 437654 (rhg1-a and Rhg4), PI 468916 (cqSCN-006 and cqSCN-007), and PI 567516C (Chr10). SCN population densities were determined for eight generations. HG type tests were conducted after the eighth generation to evaluate population shifts. The continued use of rhg1-b or 006/007 had limited effectiveness for reducing SCN type 1.2.5.7 population density, whereas rotation to the use of rhg1-a/Rhg4 resistance significantly reduced SCN population density but selected for broader SCN virulence (HG type 1.2.3.5.6.7). A rotation of rhg1-a/Rhg4 with a pyramid of rhg1-b/006/007/Chr10 was the most effective combination at both reducing population density and minimizing selection pressure. Our results provide guidance for implementation of a strategic SCN resistance rotation plan to manage the widespread virulence on PI 88788 and sustain the future durability of SCN resistance genes.

Funder

North Central Soybean Research Program

Missouri Soybean Merchandising Council

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3