The Relative Occurrence of Grapevine leafroll-associated virus 3 and Grapevine red blotch virus in Washington State Vineyards

Author:

Adiputra Jati1,Kesoju Sandya R.2,Naidu Rayapati A.1ORCID

Affiliation:

1. Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350

2. Department of Agriculture, Columbia Basin College, Pasco, WA 99301

Abstract

Vineyard surveys were conducted for three consecutive seasons in eastern Washington State, the major grapevine-growing region in the state, to document the occurrence of Grapevine leafroll-associated virus 3 (GLRaV-3) and Grapevine red blotch virus (GRBV). The majority of samples were collected from red-berried wine grape (Vitis vinifera) cultivars exhibiting symptoms of or suspected for grapevine leafroll (GLD) and red blotch (GRBD) diseases. A limited number of samples from white-berried cultivars were collected randomly due to the lack of visual symptoms. Samples were collected from a total of 2,063 grapevines from 18 red-berried cultivars and seven white-berried cultivars planted in eight American Viticultural Areas and tested for GLRaV-3 and GRBV using RT-PCR and PCR, respectively. The results showed 67.77% and 6.01% of total samples positive for GLRaV-3 and GRBV, respectively, and 9.06% of samples positive for both viruses. About 17% of samples tested negative for the two viruses, but some of these samples were positive for GLRaV-2 and GLRaV-4. Overall results indicated that GLRaV-3 was more common than GRBV, independent of cultivars and the geographic origin of samples. Due to variability in symptoms in red-berried cultivars, virus-specific diagnostic assays were deemed necessary for reliable identification of GLRaV-3 and GRBV and to differentiate GLD and GRBD symptoms from those induced by biotic and abiotic stresses in vineyards. A multiplex PCR protocol was developed for simultaneous detection of GLRaV-3 and GRBV in grapevine samples. A global phylogenetic analysis of GRBV genome sequences revealed segregation of virus isolates from Washington State vineyards into two distinct clades, with the majority of isolates belonging to clade II.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3