QoI Resistance in Fusicladium carpophilum Populations from Almond in California and Evaluation of Molecular Resistance Mechanisms

Author:

Luo Y.1,Hou L.1,Förster H.1,Adaskaveg J. E.1

Affiliation:

1. Department of Plant Pathology and Microbiology, University of California, Riverside 92521

Abstract

Disease management failures have been reported in California for almond scab caused by Fusicladium carpophilum following quinone outside inhibitor (QoI) applications. Resistance in the pathogen populations was found to be common and at high incidence in the major almond-growing regions beginning in 2003, 4 years after registration of azoxystrobin on this crop. Two levels of azoxystrobin resistance, moderate and high, were identified with 50% effective concentration (EC50) values between 0.15 and 10 μg/ml or >40 μg/ml, respectively. Reference isolates collected before resistance was detected had EC50 values <0.05 μg/ml. High-resistance was associated with a G143A mutation in the mitochondrial cytochrome b gene. For the less commonly found moderately resistant isolates, no mutations in the gene were detected between codons 122 and 212. Using primers targeting the G143A mutation or the cytochrome b gene of all F. carpophilum isolates in quantitative polymerase chain reaction (qPCR) analyses, the frequency of highly resistant isolates was accurately determined in mixtures of conidia with selected ratios of sensitive and resistant isolates. The frequency of high resistance in bulked samples of scab lesions, however, was generally underestimated compared with in vitro testing of fungicide sensitivity of fungal isolates from the same lesions. Competition experiments using conidial suspensions demonstrated stability of the highly resistant genotype in the presence of different amounts of sensitive and moderately resistant genotypes. Analysis of covariance of linear regressions of cycle threshold values on DNA concentrations derived from qPCR amplifications using two primer pairs for cytochrome b alleles with and without the G143 mutation showed that several isolates differed in their slopes and midpoints. Thus, heteroplasmy of mitochondrial-inherited QoI resistance is suggested as a likely cause for incongruence in estimating resistance frequencies using the two methods.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3