Discovery of Viruses and Virus-Like Pathogens in Pistachio using High-Throughput Sequencing

Author:

Al Rwahnih Maher1,Rowhani Adib1,Westrick Nathaniel1,Stevens Kristian2,Diaz-Lara Alfredo3,Trouillas Florent P.3,Preece John4,Kallsen Craig5,Farrar Kristen6,Golino Deborah3

Affiliation:

1. Department of Plant Pathology

2. Foundation Plant Services and Department of Evolution and Ecology

3. Department of Plant Pathology, University of California-Davis, Davis 95616

4. United States Department of Agriculture–Agricultural Research Service National Clonal Germplasm Repository, Davis, CA 95616

5. University of California Cooperative Extension, Kern County, Bakersfield 93307

6. Foundation Plant Services

Abstract

Pistachio (Pistacia vera L.) trees from the National Clonal Germplasm Repository (NCGR) and orchards in California were surveyed for viruses and virus-like agents by high-throughput sequencing (HTS). Analyses of sequence information from 60 trees identified a novel virus, provisionally named “Pistachio ampelovirus A” (PAVA), in the NCGR that showed low amino acid sequence identity (approximately 42%) compared with members of the genus Ampelovirus (family Closteroviridae). A putative viroid, provisionally named “Citrus bark cracking viroid-pistachio” (CBCVd-pis), was also found in the NCGR and showed approximately 87% similarity to Citrus bark cracking viroid (CBCVd, genus Cocadviroid, family Pospiviroidae). Both PAVA and CBCVd-pis were graft transmissible to healthy UCB-1 hybrid rootstock seedlings (P. atlantica × P. integerrima). A field survey of 123 trees from commercial orchards found no incidence of PAVA but five (4%) samples were infected with CBCVd-pis. Of 675 NCGR trees, 16 (2.3%) were positive for PAVA and 172 (25.4%) were positive for CBCVd-pis by reverse-transcription polymerase chain reaction. Additionally, several contigs across multiple samples exhibited significant sequence similarity to a number of other plant virus species in different families. These findings require further study and confirmation. This study establishes the occurrence of viral and viroid populations infecting pistachio trees.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3