Pathogenicity and Biological Characteristics of Septotinia populiperda Causing Leaf Blotch of Willow

Author:

Zhu Li-Hua12ORCID,Xu Wu13,Huang Lin12ORCID,Ye Jian-Ren12,Li De-Wei24ORCID

Affiliation:

1. College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China

2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China

3. Shanghai Qingpu Forestry Station, Shanghai, 201700, China

4. The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A.

Abstract

Salix babylonica is an important landscape tree in China and has been widely planted. In this study, the pathogenicity of Septotinia populiperda causing leaf blotch of Sa. babylonica to four willow species (Sa. matsudana, Sa. chaeomoloides, Sa. matsudana f. tortuosa, and Sa. suchowensis) and Populus tomentosa (Chinese white poplar) was determined. Its sexual stage and biological characteristics were studied. Leaves from four willow species and P. tomentosa were inoculated with mycelial plugs. Typical leaf blotches with sporodochia were produced on all inoculated leaves. Among the isolates studied, some developed conidia but sclerotia were rare. The sclerotia developed apothecia after induction at 4°C for 3 months in an incubator and 2 more months outdoors from January to March. The biological characteristics of S. populiperda showed that mycelium grew better on complete medium than on potato dextrose agar, Czapek’s agar, and minimal medium. For mycelial growth, the optimal carbon source was dextrose and the optimal nitrogen source was yeast powder. Conidia germination rate was 59.4% at 24 h. The conidia germinated best in a 4% willow leaf extraction. The optimal temperature for conidia germination was 25°C, and the optimal pH was 4.

Funder

The National Key R&D Program of China

The National Natural Science Foundation of China

The Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3