Climate-Related Risk Modeling of Banana Xanthomonas Wilt Disease Incidence in the Cropland Area of Rwanda

Author:

Kilwenge Regina1ORCID,Adewopo Julius1ORCID,Manners Rhys1,Mwizerwa Charles1,Kabirigi Michel2,Gaidashova Svetlana3,Schut Marc45

Affiliation:

1. International Institute of Tropical Agriculture (IITA), Kigali, Rwanda

2. Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale) 06120, Germany

3. Rwanda Agriculture and Animal Resources Board (RAB), Banana Program, Kigali, Rwanda

4. Knowledge, Technology and Innovation Group, Wageningen University, Wageningen, The Netherlands

5. CGIAR System Organization, Kigali, Rwanda

Abstract

Banana Xanthomonas wilt (BXW) is a major threat to banana production in Rwanda, causing up to 100% yield loss. There are no biological or chemical control measures, and little is known about the potential direction and magnitude of its spread; hence, cultural control efforts are reactive rather than proactive. In this study, we assessed BXW risk under current and projected climates to guide early warning and control by applying the maximum entropy (Maxent) model on 1,022 georeferenced BXW datapoints and 20 environmental variables. We evaluated the significance of variables and mapped potential risk under current and future climates to assess spatial dynamics of the disease distribution. BXW occurrence was reliably predicted (mean validation AUC values ranging from 0.79 to 0.85). Precipitation of the coldest quarter, average maximum monthly temperature, annual precipitation, and elevation were the strongest predictors, which were responsible for 22.1, 13, 12.6, and 9.4% of the observed incidence variability, respectively, while mean temperature of the coldest quarter had the highest gain in isolation. Furthermore, the most susceptible regions (western, northern, and southern Rwanda) were characterized by elevation (1,350 to 2,000 m), annual precipitation (900 to 1,700 mm), and average temperature (14 to 20°C), among other variables, suggesting that a consistent, rainy, and warm climate is more favorable for BXW spread. Under the future climate, the risk was predicted to increase and spread to other regions. We conclude that climate change will likely exacerbate BXW-related losses of banana land area and yield under the influence of temperature and moisture. Our findings support evidence-based targeting of extension service delivery to farmers and national early warning for timely action.

Funder

Deutsche Gesellschaft für Internationale Zusammenarbeit

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3