Effect of Temperature on Wheat Streak Mosaic Disease Development in Winter Wheat

Author:

Wosula E. N.1,Tatineni S.2,Wegulo S. N.3,Hein G. L.4

Affiliation:

1. International Institute of Tropical Agriculture, Dar es Salaam, Tanzania

2. United States Department of Agriculture–Agricultural Research Service, and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68583

3. Department of Plant Pathology, University of Nebraska-Lincoln

4. Department of Entomology, University of Nebraska-Lincoln

Abstract

Temperature is one of the key factors that influence viral disease development in plants. In this study, temperature effect on Wheat streak mosaic virus (WSMV) replication and in planta movement was determined using a green fluorescent protein (GFP)-tagged virus in two winter wheat cultivars. Virus-inoculated plants were first incubated at 10, 15, 20, and 25°C for 21 days, followed by 27°C for 14 days; and, in a second experiment, virus-inoculated plants were initially incubated at 27°C for 3 days, followed by 10, 15, 20, and 25°C for 21 days. In the first experiment, WSMV-GFP in susceptible ‘Tomahawk’ wheat at 10°C was restricted at the point of inoculation whereas, at 15°C, the virus moved systemically, accompanied with mild symptoms, and, at 20 and 25°C, WSMV elicited severe WSMV symptoms. In resistant ‘Mace’ wheat (PI 651043), WSMV-GFP was restricted at the point of inoculation at 10 and 15°C but, at 20 and 25°C, the virus infected systemically with no visual symptoms. Some plants that were not systemically infected at low temperatures expressed WSMV-GFP in regrowth shoots when later held at 27°C. In the second experiment, Tomahawk plants (100%) expressed systemic WSMV-GFP after 21 days at all four temperature levels; however, systemic WSMV expression in Mace was delayed at the lower temperatures. These results indicate that temperature played an important role in WSMV replication, movement, and symptom development in resistant and susceptible wheat cultivars. This study also demonstrates that suboptimal temperatures impair WSMV movement but the virus rapidly begins to replicate and spread in planta under optimal temperatures.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3