Affiliation:
1. Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
2. Huangdao Customs House, Qingdao 266555, China
3. Jiangsu Lixiahe Institute of Agriculture Science, Yangzhou 225007, China
4. Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
Abstract
Asparagus stem blight is a regional disease. In the present study, we compared strains of Phomopsis asparagi from six different provinces to determine their biological characteristics and genetic diversity, differences in the pycnidium and conidium production, pathogenicity, and growth rate. Considerable differences were established in the pycnidium and conidium production among the P. asparagi strains from the six studied provinces. The largest pycnidium and conidium production had the strains from Fujian, followed by those from Hainan. The virulence of P. asparagi strains was significantly different but without a correlation with the geographical source of the strain. FJ2 had the highest virulence, followed by HN2, SD4, and SD5, whereas SD5 had the lowest virulence. The colony diameter and dry weight of the strains of asparagus stem blight fungus from the six provinces were substantially different. The colonies of HN1-5 had the largest diameters, whereas those of XT1-5, LT1-3, FJ1-5, and SX6 had smaller diameters. Four primers with good repeatability and strong specificity were selected from 100 intersimple sequence repeat (ISSR) primers. ISSR-PCR amplification was performed on 36 strains of asparagus stem blight fungus, and a large number of repeatable DNA fingerprints were obtained. Most of the amplified fragments were within 300 to 500 bp. In all, 69 total points, 64 multiple points, and 92.75% polymorphism points were established. The number of ISSR gene sites detected by four primers ranged from 14 to 20, with an average of 16 multiple sites. The copolymerization was divided into three groups: XT1-5, LT1-3, and FJ1-5, which were clustered into the first group; SD1-6, SX1-6, and HB1-6, clustered into the second group; and HN1-5 in the third group. The results of the cluster analysis revealed that the strains of the neighboring provinces had a nearer phylogenetic relationship than that between distant ones. Therefore, the system evolution of P. asparagi is related to the geographical distribution of its strains.
Funder
National Natural Science Foundation of China
Special Fund for Technology Innovation Guide Engineering of Jiangxi
Jiangxi Talent Support Program for Distinguished Young Scholars
Key Projects of Science and Technology in Jiangxi
Natural Science Foundation of Jiangxi
Subject
Plant Science,Agronomy and Crop Science