Genetic Analysis of Resistance to Leaf Rust and Yellow Rust in Spring Wheat Cultivar Kenya Kongoni

Author:

Calvo-Salazar V.1,Singh R. P.2,Huerta-Espino J.3,Cruz-Izquierdo S.4,Lobato-Ortiz R.4,Sandoval-Islas S.4,Vargas-Hernández M.2,German S.5,Silva P.5,Basnet B. R.,Lan C. X.,Herrera-Foessel S. A.2

Affiliation:

1. International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico D.F., Mexico and Colegio de Post-graduados-Genética, Campus Montecillo, Carretera Mexico-Texcoco Km 36.5, Montecillo, Texcoco 56230, Estado de Mexico

2. CIMMYT

3. Campo Experimental Valle de Mexico INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo. de Mexico, Mexico

4. Colegio de Post-graduados-Genética, Campus Montecillo

5. National Institute of Agricultural Research (INIA), Route 50 km 11.500, CP 70000, Colonia, Uruguay

Abstract

The Kenyan wheat (Triticum aestivum L.) ‘Kenya Kongoni’ exhibits high levels of adult plant resistance (APR) to leaf rust (LR) and yellow rust (YR). We determined the genomic regions associated with LR and YR resistance in a population of 148 recombinant inbred lines generated from a cross between ‘Avocet-YrA’ and Kenya Kongoni. Field experiments to characterize APR to LR and YR were conducted in four and two Mexican or Uruguayan environments, respectively. A linkage map was constructed with 438 diversity arrays technology and 16 simple-sequence repeat markers by JoinMap 4.1 software. Genetic analyses showed that resistance to both rusts was determined by four to five APR genes, including Lr46/Yr29 and Sr2/Lr27/Yr30. Quantitative trait loci (QTL) analysis indicated that pleiotropic APR loci QYLr.cim-1BL corresponding to Lr46/Yr29 and QYLr.cim-7BL that is a putative novel QTL accounted for 5 to 57% and 12 to 35% of the phenotypic variation for resistance to LR and YR, respectively. These loci, in combination with another three LR QTL and two YR QTL, respectively, conferred high levels of resistance to both LR and YR in wheat under Mexican and Uruguayan environments. Among other detected QTL, QLr.cim-1DS, QLr.cim-2BL, and QYLr.icm-7BL may be new loci for APR to both rusts in common wheat.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3