Lack of Evidence for Recombination or Spatial Structure in Phoma ligulicola var. inoxydabilis Populations from Australian Pyrethrum Fields

Author:

Pethybridge Sarah J.1,Scott Jason B.2,Hay Frank S.2

Affiliation:

1. Botanical Resources Australia–Agricultural Services Pty. Ltd., Ulverstone, Tasmania, 7315, Australia

2. Tasmanian Institute of Agricultural Research (TIAR), University of Tasmania–Cradle Coast campus, Burnie, Tasmania, 7320, Australia

Abstract

Ray blight, caused by Phoma ligulicola var. inoxydabilis, causes substantial annual losses in Australian pyrethrum fields. Fifty-nine P. ligulicola var. inoxydabilis isolates were randomly selected from fields in three distinct geographical regions in Tasmania, Australia. Genetic diversity was characterized using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). Based on genetic similarities of less than 99%, 56 distinct genotypes (putative clones) were observed. Mean haploid gene diversity of clone-corrected populations ranged between 0.05 and 0.31, and 0.11 and 0.32, for the RAPD and AFLP data sets, respectively. Cluster analysis indicated two distinct groups of isolates supported by all bootstrap replicates. The first cluster contained all but four isolates with representatives from all three populations. The second cluster contained two isolates from the Western and Central populations, respectively, while the remaining isolates were not able to be grouped with any distinct cluster. Analysis of the population structure suggested no evidence for spatial autocorrelation at the smallest distance classes. The presence of linkage disequilibrium was indicated regardless of population scale. Collectively, these findings provided further evidence for the absence or minor role of the teleomorph in the epidemiology of ray blight in Australian pyrethrum fields.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3