Identification of a Wheat Powdery Mildew Dominant Resistance Gene in the Pm5 Locus for High-Throughput Marker-Assisted Selection

Author:

Han Guohao1,Yan Hanwen1,Gu Tiantian1,Cao Lijun1,Zhou Yilin2,Liu Wei2ORCID,Liu Dongcheng3,An Diaoguo14ORCID

Affiliation:

1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China

2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

3. State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071000, China

4. Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), poses a severe threat to wheat yield and quality worldwide. Rapid identification and the accurate transference of effective resistance genes are important to the development of resistant cultivars and the sustainable control of this disease. In the present study, the wheat line AL11 exhibited high levels of resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the AL11 × ‘Shixin 733’ mapping population revealed that its resistance was controlled by a single dominant gene, tentatively designated PmAL11. Using bulked segregant RNA-Seq and molecular marker analysis, PmAL11 was mapped to the Pm5 locus on chromosome 7B where it cosegregated with the functional marker Pm5e-KASP. Sequence alignment analysis revealed that the Pm5e-homologous sequence in AL11 was identical to the reported recessive gene Pm5e in wheat landrace ‘Fuzhuang 30’. It appears that PmAL11 was most probably Pm5e, but it was mediated by a dominant inheritance pattern, so it should provide a valuable resistance resource for both genetic study and wheat breeding. To efficiently use and trace PmAL11 in breeding, a new kompetitive allele-specific PCR marker AL11-K2488 that cosegregated with this gene was developed and confirmed to be applicable in the different wheat backgrounds, thus promoting its use in the marker-assisted selection of PmAL11.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3