Mapping Stripe Rust Resistance QTL in ‘N2496’, a Synthetic Hexaploid Wheat Derivative

Author:

Hou Shuai12,Wu Fangkun12,Wang Zhiqiang12,Yan Ning12,Chen Hao12,Li Haojie12,Yang Peiyu12,Zhang Ying12,Li Caixia12,Lin Yu12,Ma Jian12,Huang Lin12ORCID,Liu Yaxi12ORCID

Affiliation:

1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China

2. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China

Abstract

Stripe rust is a destructive disease that affects plant growth and substantially reduces wheat yields globally. An economically and environmentally friendly way to control this disease is to use resistant cultivars. ‘N2496’ is a synthetic hexaploid wheat derivative that exhibits high resistance and could serve as a source of resistance for breeding programs. We developed three recombinant inbred lines (RILs) populations by crossing ‘N2496’ with common wheat cultivars ‘CN16’, ‘CM107’, and ‘MM37’. Stripe rust responses were evaluated in all three populations using a mixture of current predominant Chinese Puccinia striiformis f. sp. tritici races. A stripe rust resistance quantitative trait locus (QTL) in the ‘N2496’/‘CN16’ RIL population was mapped on chromosome arm 6BL at 519.35 to 526.55 Mb using bulked segregant RNA sequencing. The population was genotyped using simple sequence repeats and kompetitive allele-specific polymerase (KASP) markers. The QTL QYr.sicau-6B was localized to a 1.19-cM interval flanked by markers KASP-TXK-10 and KASP-TXK-6. The genetic effect of QYr.sicau-6B was validated in the ‘N2496’ × ‘CM107’ and ‘N2496’ × ‘MM37’ RILs populations and explained up to 63.16% of the phenotypic variation. RNA sequencing and quantitative real-time polymerase chain reaction identified two differentially expressed candidate genes in the physical interval of QYr.sicau-6B.

Funder

Key Research and Development Program of Sichuan Province

Foundation of Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3