Affiliation:
1. Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
Abstract
Phytophthora root rot can greatly impact citrus production worldwide, especially in newly established orchards by reducing crop yield and increasing the cost of disease management. Mandipropamid is an Oomycota fungicide that is currently registered as a soil treatment for citrus nursery container plants to manage Phytophthora root rot. In this study, we investigated the uptake of mandipropamid into citrus roots and its translocation to stems and leaves after soil application and evaluated its mobility in roots as compared to oxathiapiprolin and mefenoxam using split-root potted plants and trees in the field. A bioassay and liquid chromatography-tandem mass spectrometry were used to detect and quantify fungicides in citrus tissues, and overall, similar results were obtained using the two methods. When applied to the soil of potted, 6- to 7-month-old citrus plants using labeled rates, the majority of mandipropamid was found in root tissues (4.9 to 18.1 μg/g), but small amounts were also present in stems (0.18 to 0.32 μg/g) and leaves (0.03 to 0.22 μg/g). There was no significant increase in concentrations in all three tissues between 1 and 4 weeks after application. Concentrations in all tissues exceeded established EC50 values for mycelial growth inhibition of P. citrophthora and P. nicotianae, the main citrus root rot pathogens in California. In a split-root study where the root systems of single plants were separated, no basipetal phloem-based mobility of mandipropamid or oxathiapiprolin was observed, but relative uptake into roots was higher for mandipropamid. In contrast, low amounts of mefenoxam were also present in roots in the untreated soil. Similar results were obtained in a field study where part of the root system was treated, and fungicides were extracted from nontreated roots. All three fungicides persisted inside roots over the 8-week period of this study. Uptake and persistence inside roots, as well as the previously reported high efficacy against citrus root rot in greenhouse and field studies support the use of mandipropamid in citrus nurseries and potentially in the orchard.
Subject
Plant Science,Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献