Root Absorption and Limited Mobility of Mandipropamid as Compared to Oxathiapiprolin and Mefenoxam After Soil Treatment of Citrus Plants for Managing Phytophthora Root Rot

Author:

Belisle Rodger J.1,Hao Wei1,Riley Nathan1,Förster Helga1,Adaskaveg James E.1ORCID

Affiliation:

1. Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521

Abstract

Phytophthora root rot can greatly impact citrus production worldwide, especially in newly established orchards by reducing crop yield and increasing the cost of disease management. Mandipropamid is an Oomycota fungicide that is currently registered as a soil treatment for citrus nursery container plants to manage Phytophthora root rot. In this study, we investigated the uptake of mandipropamid into citrus roots and its translocation to stems and leaves after soil application and evaluated its mobility in roots as compared to oxathiapiprolin and mefenoxam using split-root potted plants and trees in the field. A bioassay and liquid chromatography-tandem mass spectrometry were used to detect and quantify fungicides in citrus tissues, and overall, similar results were obtained using the two methods. When applied to the soil of potted, 6- to 7-month-old citrus plants using labeled rates, the majority of mandipropamid was found in root tissues (4.9 to 18.1 μg/g), but small amounts were also present in stems (0.18 to 0.32 μg/g) and leaves (0.03 to 0.22 μg/g). There was no significant increase in concentrations in all three tissues between 1 and 4 weeks after application. Concentrations in all tissues exceeded established EC50 values for mycelial growth inhibition of P. citrophthora and P. nicotianae, the main citrus root rot pathogens in California. In a split-root study where the root systems of single plants were separated, no basipetal phloem-based mobility of mandipropamid or oxathiapiprolin was observed, but relative uptake into roots was higher for mandipropamid. In contrast, low amounts of mefenoxam were also present in roots in the untreated soil. Similar results were obtained in a field study where part of the root system was treated, and fungicides were extracted from nontreated roots. All three fungicides persisted inside roots over the 8-week period of this study. Uptake and persistence inside roots, as well as the previously reported high efficacy against citrus root rot in greenhouse and field studies support the use of mandipropamid in citrus nurseries and potentially in the orchard.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3