Refinement of Nonantibiotic Spray Programs for Fire Blight Control in Organic Pome Fruit

Author:

Johnson Kenneth B.1ORCID,Temple Todd N.1,KC Achala12ORCID,Elkins Rachel B.3

Affiliation:

1. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902

2. Southern Oregon Research and Extension Center, Medford, OR 97502

3. Lake County Cooperative Extension, University of California, Lakeport, CA 95453

Abstract

Fire blight-susceptible, certified organic pome fruit is produced on 9,000 ha in the Pacific Northwest region of the United States with acreage continuing to expand despite a 2014 prohibition on antibiotics as allowable materials for infection suppression. Nonantibiotic practices for fire blight pathogen suppression mirror conventional management, but the full-bloom-to-petal-fall period when antibiotics are typically sprayed for fire blight control continues to receive research scrutiny owing to drawbacks and weaknesses of alternative materials. As solitary treatments, effective nonantibiotic materials (e.g., a yeast biocontrol, soluble coppers, and potassium aluminum sulfate) raise the risk of a crop-value–reducing, phytotoxic response termed “fruit russeting.” Conversely, materials with less russeting risk (e.g., Bacillus-based biorationals) are less effective for fire blight control. Spray programs using a sequence of materials applied from midbloom to petal fall have the potential to provide high levels of protection with reduced russeting risk. In orchard trials, the effects of nonantibiotic spray programs on the epiphytic population size of Erwinia amylovora in flowers, yeast biocontrol population size, floral pH, infection suppression, and fruit russeting revealed strategies for sequencing sprays of nonantibiotic materials. The yeast biocontrol, Blossom Protect (Aureobasidium pullulans), sprayed at 70% bloom, was an important contributor to fire blight pathogen suppression as was the soluble copper material, Previsto, when applied at full bloom. Choice of material for the petal-fall spray timing was important to fruit russeting risk but apparently less important to overall infection incidence. Consequently, treatment programs of Blossom Protect at 70% bloom, a soluble copper at full bloom, and a Bacillus-based biorational at petal fall, best balance the quality of infection suppression with the risk of fruit russeting.

Funder

U.S. Department of Agriculture’s National Institute of Food and Agriculture’s Organic Agriculture Research Programs

Pear Bureau Northwest’s Fresh Pear Research Committee

Washington Tree Fruit Research Commission

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3