A Method to Induce Stem Cankers by Inoculating Nonwounded Populus Clones with Septoria musiva Spore Suspensions

Author:

LeBoldus Jared M.1,Blenis Peter V.1,Thomas Barb R.2

Affiliation:

1. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada

2. Alberta-Pacific Forest Industries Inc., Boyle, AB T0A 0M0, Canada

Abstract

Most artificial inoculations of Populus spp. stems with Septoria musiva have required host wounding to induce canker development; in the absence of wounds, frequencies of cankers have been low. Three greenhouse inoculation experiments were conducted to demonstrate the reliability and repeatability of an inoculation method that did not require wounding. In the first, 16 clones of hybrid poplar were inoculated with three isolates of S. musiva to compare responses following wounding and inoculation with mycelium (wound inoculation) with responses following inoculation of nonwounded trees by spraying with a conidial suspension (spray inoculation). Stem disease severity among clones following spray inoculation was correlated with stem disease severity following wound inoculation. A significant clone–isolate interaction was detected with spray inoculation but not wound inoculation. In the other two greenhouse experiments, 29 clones of hybrid poplar and 69 clones of Populus balsamifera were inoculated with a spore suspension mixture of three isolates. In both cases, the experimental error was similar to that obtained in previous experiments, in which trees were wound inoculated, and was adequately small to permit detection of differences in responses among clones. Ultimately, field studies will be needed to determine the best inoculation method for predicting stem responses to this pathogen under field conditions. However, relative to wound inoculation, spray inoculation of nonwounded trees has the advantage of yielding faster results, permitting inoculation with a mixture of isolates, and not circumventing potential mechanisms for resisting penetration. The ability to infect stems without wounding creates opportunities for numerous types of epidemiological and disease control studies that are difficult to conduct with wound inoculation.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3