Sensitivity of Botrytis cinerea From Nectarine/Cherry in China to Six Fungicides and Characterization of Resistant Isolates

Author:

Yin W. X.1,Adnan M.1,Shang Y.1,Lin Y.1,Luo C. X.1ORCID

Affiliation:

1. Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Botrytis cinerea, the causal agent of gray mold, can result in considerable preharvest and postharvest losses in many economically valuable plant species. Fungicides were widely used to minimize such losses, but fungicide resistances were detected frequently. In the present study, we collected 164 isolates from nectarine and cherry in China and tested the sensitivity to six fungicides. Among the tested isolates, 71 (43.3%) were resistant to azoxystrobin, 14 (8.5%) to cyprodinil, 7 (4.3%) to boscalid, 4 (2.4%) to carbendazim, 1 (0.6%) to iprodione, and no isolates were found to be resistant to fludioxonil. The EC50 value and resistance factor (RF) of resistant isolates were determined. Fitness analysis showed that there were no significant differences between sensitive and resistant isolates for osmotic stress and pathogenicity, while more conidia production was observed for some resistant isolates. Control efficacy of fungicides showed that the resistant isolates could not be controlled efficiently by using corresponding fungicides. The point mutation G143A was detected in the Cyt b gene of the isolates resistant to azoxystrobin, while the point mutation H272R of SdhB gene was confirmed in boscalid-resistant isolates, and mutations E198V/A of TUB2 gene and mutation I365S of BcOs1 occurred in carbendazim-resistant and iprodione-resistant isolates, respectively. These results indicate that the occurrence of fungicide resistance greatly threatens the management of gray mold on stone fruits nectarine and cherry.

Funder

Earmarked fund for Modern Agro-Industry Technology Research System

Special Fund for Agro-scientific Research in the Public Interest

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3