Sources of Primary Inoculum of Botrytis cinerea and Their Impact on Fungicide Resistance Development in Commercial Strawberry Fields

Author:

Oliveira Michelle Souza1,Amiri Achour2,Zuniga Adrian I.3,Peres Natalia A.3

Affiliation:

1. Gulf Coast Research and Education Center, University of Florida, Wimauma 33598

2. Tree Fruit Research and Extension Center, Washington State University, Wenatchee 98801

3. Gulf Coast Research and Education Center, University of Florida, Wimauma 3598

Abstract

Strawberry transplants produced in nurseries across Canada, northern United States, and California are shipped annually to other strawberry-growing regions, including Florida. Botrytis cinerea, the causal agent of gray mold, causes latent infections on transplants which are suggested as a potential source of primary inoculum in strawberry fields. In this study, we investigated the survival of B. cinerea isolates over the summer in Florida, the presence of B. cinerea in transplants from 14 nurseries from Canada and the United States in 2011, 2012, and 2013, and the sensitivity of nursery population to several botryticides. Botrytis cinerea was detected on dead strawberry plants sampled from commercial strawberry fields between March and June but not in July and August, suggesting that the fungus does not over-summer in strawberry fields in Florida. Nursery transplants surveyed in 2011, 2012, and 2013 showed B. cinerea incidences of 20 to 37, 20 to 83, and 2.5 to 92.5%, respectively. In total, 409 isolates were tested for sensitivity to pyraclostrobin, boscalid, pyrimethanil, fenhexamid, iprodione, penthiopyrad, fluopyram, and fludioxonil. Overall, respective resistance frequencies were 91.7, 79.3, 33.2, 20.7, 2.4, 0.2, 0.2, and 0.0%. A majority of isolates tested were resistant to either 3 or 4 fungicides simultaneously. These findings reinforce the need for an integrated approach between strawberry nurseries and production fields to improve gray mold management and mitigate future risks of resistance development in B. cinerea.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3