Affiliation:
1. CIHEAM/Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano (Ba), Italy, and Agricultural Research Center, Plant Pathology Research Institute, Giza, Egypt
2. CIHEAM/Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano (Ba), Italy
3. Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari “Aldo Moro,” Bari, Italy
Abstract
During spring-summer 2009, a survey was conducted to determine the species of Phytophthora present in citrus nurseries in Egypt. A total of 300 samples of soil and fibrous roots were collected from the rhizosphere of symptomatic Volkameriana lemon (Citrus volkameriana Tan. & Pasq.) plants growing in Delta (Benha-Qalyubia) and a desert (Cairo/Alexandria desert road) citrus nurseries. Plants showed various symptoms. Canopies of affected plants showed few and yellowish leaves, a general stunted growth, no new vegetation, and sometimes sudden desiccation; the root system showed few dark brown feeder roots, no new yellow-white apexes, and a fibrous appearance of the rootlets due to disintegration of the cortical bark but not of the xylem. Collected rootlets and soil were plated in Petri dishes containing a selective medium for the oomycete Phytophthora (2) and incubated for 3 to 6 days at 19 ± 1°C as described by Ippolito et al. (1). Pure cultures were obtained by single-hypha transfers and the isolates were identified as Phytophthora palmivora (Butler) Butler on the basis of morphological and cultural characteristics (3). Isolates formed stoloniferous colonies on potato dextrose agar (PDA) and grew between 10 and 30°C, with the optimum at 25°C. On V8 juice agar, they showed a highly fluffy pattern and produced terminal and intercalary globose chlamydospores. Sporangia were papillate, elliptical (45 to 51 × 29 to 35 μm; length/breadth ratio of 1.3:1.8), and were caducous with short pedicel. All isolates were A2 mating type, forming spherical oogonia and amphigynous antheridia in dual cultures with reference P. palmivora isolate of A1 mating type. Identification of the isolates was further confirmed by amplification and sequencing of the internal transcribed spacer (ITS) region using the universal primers ITS4 and ITS6. BLASTn analysis of ITS sequences (GenBank Accession No. HE583183) showed 99% homology with P. palmivora isolates available in GenBank. Pathogenicity tests for P. palmivora were conducted by inoculating three groups of ten 6-month-old Volkameriana lemon plants, transplanted into 1.4 liter pots with growing medium artificially inoculated at the rate of 1% (v/v) of P. palmivora inoculum produced according to Yaseen (4). Ten uninoculated plants served as a control. Two months after the inoculation, plants were analyzed for canopy symptoms and the presence of pathogen in feeder roots. More than 50% of inoculated plants showed foliage symptoms and extensive decay of feeder roots. Colonies of Phytophthora were recovered from necrotic rootlets and identified as P. palmivora, fulfilling Koch's postulates. To the best of our knowledge, this is the first report of P. palmivora as a pathogen to citrus plants in the Egyptian nurseries. P. palmivora should be considered a potential threat to the Egyptian citrus industry since it may negatively influence the nurseries and orchards production in the future. References: (1) A. Ippolito, V. De Cicco, and M. Salerno. Rivista di Patologia Vegetale 2:57, 1992. (2) H. Masago, M. Yoshikawa, M. Fukada, and N. Nakanishi. Phytopathology 67:425, 1977. (3) D. J. Stamps. Revised tabular key to the species of Phytophthora. CAB International Mycological Institute, Kew, Surrey, 1990. (4) T. Yaseen. Molecular diagnosis and biological control of Phytophthora-citrus root rot. PhD thesis. University of Bari, Italy, 2004.
Subject
Plant Science,Agronomy and Crop Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献