Recovery from Cucurbit leaf crumple virus (Family Geminiviridae, Genus Begomovirus) Infection Is an Adaptive Antiviral Response Associated with Changes in Viral Small RNAs

Author:

Hagen C.,Rojas M. R.,Kon T.,Gilbertson R. L.

Abstract

A strong recovery response occurs in cantaloupe (Cucumis melo) and watermelon (Citrullus lanatus) infected with the bipartite begomovirus Cucurbit leaf crumple virus (CuLCrV). This response is characterized by initially severe symptoms, which gradually become attenuated (almost symptomless). An inverse relationship was detected between viral DNA levels and recovery, indicating that recovered tissues had reduced viral titers. Recovered tissues also were resistant to reinfection with CuLCrV; i.e., recovered leaves reinoculated with the virus did not develop symptoms or have an increased level of viral DNA. In contrast, infection of CuLCrV-recovered leaves with the RNA virus, Cucumber mosaic virus (CMV), disrupted recovery, resulting in the development of severe disease symptoms (more severe than those induced by CMV or CuLCrV alone) and increased CuLCrV DNA levels. Small RNAs with homology to CuLCrV DNA were detected in recovered and nonrecovered tissues; as well as in phloem exudates from infected, but not uninfected plants. Levels of these small RNAs were positively correlated with viral titer; thus, recovered tissues had lower levels than symptomatic tissues. In addition, viral DNA from a host that undergoes strong recovery (watermelon) was more highly methylated compared with that from a host that undergoes limited recovery (zucchini). Furthermore, inoculation of CuLCrV-infected zucchini with a construct expressing an inverted repeat of the CuLCrV common region enhanced recovery and reduced viral symptoms and viral DNA levels in newly emerged leaves. Taken together, these results suggest that recovery from CuLCrV infection is an adaptive antiviral defense mechanism, most likely mediated by gene silencing.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3