Intraspecific Genomic Variation Within Xanthomonas albilineans, the Sugarcane Leaf Scald Pathogen

Author:

Davis M. J.,Rott P.,Warmuth C. J.,Chatenet M.,Baudin P.

Abstract

To better understand the nature of recent outbreaks of leaf scald disease of sugarcane in a number of sugarcane production regions of the world including Florida, Guadeloupe, Louisiana, Mauritius, Taiwan, and Texas, a study of the worldwide genetic variation of the pathogen was undertaken. A total of 218 strains from 31 geographic locations were examined. Genomic DNA of each strain was digested with the rare cutting restriction enzyme SpeI, and the fragments were separated by pulsed-field gel electrophoresis (PFGE). A total of 102 bands were identified, and 54 different DNA banding patterns (haplotypes) were observed. Eight groups of banding patterns, designated PFGE groups A through H, were consistently detected by visual, principal component, and cluster analyses. Five groups were comprised of multiple haplotypes representing numerous strains, and three were comprised of single haplotypes representing one strain each. The leaf scald outbreaks in Florida, Louisiana, Texas, and possibly Guadeloupe and Taiwan could be attributed to the introduction of strains belonging to PFGE group B. When infection by two strains each of the newly introduced strains (PFGE group B) and those previously present in Florida (PFGE group A) was analyzed in 22 sugarcane cultivars by reisolation 24 weeks after inoculation, a significantly greater mean frequency was detected for PFGE group B strains and no cultivar by PFGE group interaction was observed. Inadvertent dispersal of the pathogen among plants, possibly by means of aerosols or splashing water, was detected in a subsequent experiment. Strains of PFGE group B were recovered from the internal tissues of some plants inoculated with PFGE group A strains and were also found to be epiphytic colonizers of nonsymptomatic, noninoculated plants adjacent to the inoculated plants; whereas strains of PFGE group A were recovered only from plants that had been inoculated with them. Thus, the possibility became more apparent that strain variation might be associated, at least in part, with factors governing plant-to-plant spread of the pathogen in nature.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3