Modeling Dose-Response Relationships in Biological Control: Partitioning Host Responses to the Pathogen and Biocontrol Agent

Author:

Smith Kevin P.,Handelsman Jo,Goodman Robert M.

Abstract

Breeding plants to improve the effectiveness of biocontrol agents is a promising approach to enhance disease suppression by microorganisms. Differences in biocontrol efficacy among cultivars suggest there is genetic variation for this trait within crop germplasm. The ability to quantify host differences in support of biological control is influenced by variation in host response to the pathogen and the dose of pathogen and biocontrol agent applied to the host. To assess the contribution of each of these factors to successful biocontrol interactions, we measured disease over a range of pathogen (Pythium) and biocontrol agent (Bacillus cereus UW85) inoculum doses. We fit dose-response models to these data and used model parameter estimates to quantify host differences in response to the pathogen and biocontrol agent. We first inoculated eight plant species separately with three species of Pythium and evaluated three dose-response models for their ability to describe the disease response to pathogen inoculum level. All three models fit well to at least some of the host-pathogen combinations; the hyperbolic saturation model provided the best overall fit. To quantify the host contribution to biological control, we next evaluated these models with data from a tomato assay, using six inbred tomato lines, P. torulosum, and UW85. The lowest dose of pathogen applied revealed the greatest differences in seedling mortality among the inbred lines, ranging from 40 to 80%. The negative exponential (NE) pathogen model gave the best fit to these pathogen data, and these differences corresponded to model parameter values, which quantify pathogen efficiency, of 0.023 and 0.091. At a high pathogen dose, we detected the greatest differences in biocontrol efficacy among the inbred lines, ranging from no effect to a 68% reduction in mortality. The NE pathogen model with a NE biocontrol component, the NE/NE biocontrol model, gave the best fit to these biocontrol data, and these reductions corresponded to model parameter values, which quantify biocontrol efficiency, of 0.00 and 0.038, respectively. There was no correlation between the host response to the pathogen and biocontrol agent for these inbred lines. This work demonstrates the utility of epidemiological modeling approaches for the study of biological control and lays the groundwork to employ manipulation of host genetics to improve biocontrol efficacy.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3