Genetic Structure of Cronartium ribicola Populations in Eastern Canada

Author:

Et-touil K.,Bernier L.,Beaulieu J.,Bérubé J. A.,Hopkin A.,Hamelin R. C.

Abstract

The genetic structure of populations of Cronartium ribicola was studied by sampling nine populations from five provinces in eastern Canada and generating DNA profiles using nine random amplified polymorphic DNA markers. Most of the total gene diversity (Ht = 0.386) was present within populations (Hw = 0.370), resulting in a low level of genetic differentiation among populations in northeastern North America (Fst = 0.062). A hierarchical analysis of genetic structure using an analysis of molecular variance (AMOVA) revealed no statistically significant genetic differentiation among provinces or among regions. Yet, genetic differentiation among populations within regions or provinces was small (AMOVA φst = 0.078) but statistically significant (P < 0.001) and was several orders of magnitude larger than differentiation among provinces. This is consistent with a scenario of subpopulations within a metapopulation, in which random drift following migration and new colonization are major evolutionary forces. A phenetic analysis using genetic distances revealed no apparent correlation between genetic distance and the province of origin of the populations. The hypothesis of isolation-by-distance in the eastern populations of C. ribicola was rejected by computing Mantel correlation coefficients between genetic and geographic distance matrices (P > 0.05). These results show that eastern Canadian provinces are part of the same white pine blister rust epidemiological unit. Nursery distribution systems are controlled provincially, with virtually no seedling movement among provinces; therefore, infected nursery material may not play an important role in the dissemination of this disease. Long-distance spore dispersal across provincial boundaries appears to be an epidemiologically important factor for this pathogen.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3