Rapid Quantification of Soilborne Pathogen Communities in Wheat-Based Long-Term Field Experiments

Author:

Smiley Richard W.1,Machado Stephen1,Rhinhart Karl E. L.1,Reardon Catherine L.2,Wuest Stewart B.2

Affiliation:

1. Oregon State University, Columbia Basin Agricultural Research Center, Pendleton 97801

2. United States Department of Agriculture–Agricultural Research Service, Columbia Plateau Conservation Research Center, Pendleton, OR 97801

Abstract

Rainfed experiments operated continuously for up to 84 years in semiarid eastern Oregon are among the oldest agronomic trials in North America. Disease incidence and severity had been quantified visually but quantification of inoculum density had not been attempted. Natural inoculum of 17 fungal and nematode pathogens were quantified for each of 2 years on eight trials using DNA extracts from soil. Crop type, tillage, rotation, soil fertility, year, and their interactions had large effects on the pathogens. Fusarium culmorum and Pratylenchus thornei were more dominant than F. pseudograminearum and P. neglectus where spring crops were grown, and the opposite species dominances occurred where winter wheat was the only crop. Bipolaris sorokiniana and Phoma pinodella were restricted to the presence of spring cereals and pulse crops, respectively. Helgardia spp. occurred in winter wheat-fallow rotations but not in annual winter wheat. Gaeumannomyces graminis var. tritici was more prevalent in cultivated than noncultivated soils and the opposite generally occurred for Rhizoctonia solani AG-8. Densities of Pythium spp. clade F were high but were also influenced by treatments. Significant treatment effects and interactions were more prevalent in two long-standing (>50-year) annually cropped experiments (29%) than two long-standing 2-year wheat-fallow rotations (14%). Associations among pathogens occurred mostly in an 84-year-old annual cereals experiment. This survey provided guidance for research on dynamics of root-infecting pathogens of rainfed field crops and identified two pathogens (Drechslera tritici-repentis and P. pinodella) not previously identified at the location.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3