Dynamics of Population Density and Virulence Phenotype of the Soybean Cyst Nematode as Influenced by Resistance Source Sequence and Tillage

Author:

Chen Senyu1ORCID

Affiliation:

1. Southern Research and Outreach Center, University of Minnesota, Waseca, MN 56093

Abstract

The soybean cyst nematode (SCN), Heterodera glycines, is the most damaging pathogen of soybean. Use of resistant cultivars is an effective strategy to manage SCN, but it also selects for virulent populations over time. A 12-year field experiment was initiated in 2003 to study how tillage and 11 different sequences of four cultivars impact SCN population dynamics and virulence. An SCN-susceptible cultivar and three resistant cultivars (R1, R2, and R3 derived from cultivars PI 88788, Peking, and PI 437654, respectively) were used. Tillage had minimal effect on SCN population density. Compared with no till, conventional tillage resulted in a faster increase of SCN virulence to Peking when the SCN was selected by R2 and virulence to PI 88788 by R3. Among the three SCN-resistant cultivars, R1 supported the greatest population density, R2 supported intermediate population density, and R3 supported the least SCN population density. The SCN populations selected by R1 overcame the resistance in PI 88788 but not in Peking and PI 437654. R2 selected SCN populations that overcame the resistance in Peking but not in PI 88788 and PI 437654. In contrast, R3 selected SCN populations that overcame both PI 88788 and Peking sources of resistance. There was no increase of virulence to PI 437654 in any cultivar sequence. R1 in rotation with R2 or R3 had a negative effect on female index on Peking. Susceptible soybean reduced SCN virulence to Peking, indicating that there was fitness cost of the Peking virulent SCN type. These results suggest that rotation of Peking with PI 88788 is a good strategy for managing the SCN, and susceptible cultivar and no till may reduce SCN virulence selection pressure in some rotations. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3