Development and Validation of KASP Markers for the Identification of Pea seedborne mosaic virus Pathotype P1 Resistance in Pisum sativum

Author:

Swisher Grimm Kylie D.1ORCID,Porter Lyndon D.2

Affiliation:

1. Temperate Tree Fruit and Vegetable Research Unit, U.S. Department of Agriculture Agricultural Research Service, Prosser, WA 99350

2. Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture Agricultural Research Service, Prosser, WA 99350

Abstract

As pesticides have become heavily relied on for management of insect pests vectoring economically important pathogens of vegetable crops, development of pathogen-resistant germplasm remains a promising alternative to reduce or eliminate costly and timely chemical inputs. Molecular markers can be used to rapidly identify resistant genotypes to aid breeders in advancing germplasm. This study developed two kompetitive allele-specific PCR (KASP) genotyping markers for rapid screening of Pisum sativum genotypes for resistance to Pea seedborne mosaic virus pathotype P1 (PSbMV-P1), the most economically devastating strain worldwide. The KASP markers differentiate two eIF4E PSbMV-P1-resistant allelic variants from susceptible eIF4E variants. A single nucleotide polymorphism (Resistant 1) and a 3-basepair deletion (Resistant 2) present in either of the two resistant alleles were used for marker design. Forty-four P. sativum lines previously characterized for resistance to PSbMV were inoculated with PSbMV-P1 in a greenhouse, observed for visual symptoms, assayed for virus susceptibility by enzyme-linked immunosorbent assay (ELISA), and genotyped by KASP marker analysis. The KASP markers were 100% accurate in characterizing PSbMV-P1-susceptible and PSbMV-P1-resistant genotypes when correlated with the ELISA results. The Resistant 1 marker also correlated with resistance to PSbMV pathotypes P2 and P4 completely, making this marker a new advanced tool for P. sativum breeding programs.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3