First report of stem gray blight on Hylocereus megalanthus and Hylocereus polyrhizus caused by Diaporthe arecae in Brazil

Author:

Inokuti Eliane Mayumi1,Saraiva José Laylton Rogério2,Silva Diene Elen Miranda da3,Corrêa Márcio Cleber de Medeiros4,Lima Cristiano Souza5

Affiliation:

1. Universidade Federal do Ceará, 28121, Fitotecnia - Setor de Fitossanidade, Av. Mister Hull, 2977 Bloco 806 - Campus do Pici, Fortaleza, CE, Brazil, 60.356-001;

2. Universidade Federal do Ceara, 28121, Fitotecnia, Fortaleza, CE, Brazil;

3. Universidade Federal do Ceara, 28121, Fitotecnia, Av. Mister Hull, s/n, Campus do Pici, Fortaleza, CE, Brazil, 60455-760;

4. Universidade Federal do Ceará, 28121, Fortaleza, CE, Brazil;

5. Universidade Federal do Ceara, 28121, Departamento de Fitotecnia, Rua Campus do Pici s/n Bloco 805, Fortaleza, CE, Brazil, 60440-554;

Abstract

In November 2021, stem gray blight symptoms were seen on two dragon fruit (pitaya) species (Hylocereus megalanthus and H. polyrhizus) in an orchard with 100% disease incidence in Fortaleza, Ceará, Brazil (3°44'24.5"S 38°34'30.8"W). The symptoms were initially yellowish to dark brown lesions, and as the symptoms progressed, the lesions turned grayish with small black pycnidia in the center. Isolation was carried out by disinfecting small pieces of the symptomatic stems in 70% ethanol for 1 min, followed by 1% NaOCl for 1 min, and then rinsed three times with sterile distilled water. Excess water was removed using sterile filter paper. Then the stem fragments were placed on PDA media. Colonies produced small black pycnidia with conidia and some were sterile after 68 days of incubation. Two monosporic isolates were obtained from the colonies: UFCM 0708 from H. megalanthus and the UFCM 0710 from H. polyrhizus, which were used for pathogenicity test, morphological and molecular identification. The colony on PDA was smoke gray with aerial mycelium and the reverse was smoke grey to dark grey. The α-conidia from UFCM 0708 and UFCM 0710 were hyaline, aseptate and fusiform and measured 6.4 to 9.7 (8.0) x 1.2 to 2.4 (1.7) µm and 6 to 13.1 (8.2) x 1.7 to 2.4 (2.0) µm, respectively. The β-conidia from UFCM 0708 and UFCM 0710 were hyaline, aseptate and filiform and measured 15 to 22.5 (18.8) x 0.6 to 1.7 (1.0) µm, and 17.2 to 27.5 (22.3) x 0.5 to 1.0 (0.8) µm (n=30), respectively. This morphology placed the isolates as Diaporthe sp. (Udayanga et al. 2012). For further confirmation, genomic DNA was extracted from the isolates (UFCM 0708 and UFCM 0710), and beta-tubulin (TUB2) and translation elongation factor 1-alpha (TEF1) gene fragments were amplified. BLASTn search results with isolates TEF1 and TUB2 sequences varied from 98.58% to 99.52% identity to the ex-type sequence of Diaporthe arecae (CBS 161.64). Phylogenetic analysis of concatenated sequences alignment carried out using the Maxinum-likelihood and Bayesian Inference analysis placed the isolates within D. arecae clade with 86% bootstrap and 0.99 posterior probabilities support. The sequences obtained in this study were deposited in GenBank (TEF1: OP534720 and OP534722; TUB2: OP534717 and OP534719). The isolates were confirmed as D. arecae based on molecular analysis and morphological characteristics (Gomes et al. 2013). Koch’s postulates were completed as described by Karim et al. (2019) through the inoculation of six stems of each dragon fruit (pitaya) species. The stems were wounded by removing a 5 mm diameter disc and after that they were inoculated with a 5 mm diameter mycelial plug from 5 days old PDA plates. PDA plugs were used as control. Each stem was covered with a plastic bag and sterilized water was added into the sterilized filter paper to maintain humidity. The bags were kept in a room at day and night temperature of 25 ± 2 °C. The same symptoms seen in the field appeared on the stems 21 days after inoculation. The control stems remained symptomless. Diaporthe arecae have been reported on H. polyrhizus in Malaysia (Huda-Shakirah et al. 2021). To our knowledge, this is the first report of D. arecae on H. megalanthus and H. polyrhizus in Brazil.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3