Effects of Spore Density and Interaction With Heterodera glycines on Soybean Root Rot Caused by Fusarium solani and F. tricinctum

Author:

Yan Hui1,Nelson Berlin1ORCID

Affiliation:

1. Department of Plant Pathology, North Dakota State University, Fargo, ND 58102

Abstract

Fusarium root rot, caused by Fusarium solani and F. tricinctum, is a major soybean disease in the North Central United States. This study investigated the effects of the macroconidia density and the additive effects of soybean cyst nematode (SCN), Heterodera glycines, on the severity of Fusarium root rot. To determine the effect of spore density on severity, experiments were conducted in La Prairie silt loam soil in a greenhouse using conidial suspensions ranging from 101 to 106 macroconidia/ml soil. Root discoloration and lesion lengths on taproots increased as spore numbers increased, with significant effects of spore densities starting at 104 and 105 macroconidia/ml soil for F. solani and F. tricinctum, respectively. A nonlinear sigmoid model was fitted to root discoloration against density, whereas a linear regression model was fitted to root lesion length against density. The interaction between the nematode at different egg densities with the two Fusarium spp. at 105 macroconidia/ml soil was investigated. In the greenhouse, root discoloration and lesion length were significantly greater in plants inoculated with Fusarium spp. and H. glycines at 10 eggs/ml soil or greater, compared with Fusarium spp. alone. In field trials, coinfestation of soil with the two Fusarium spp. and H. glycines significantly increased root rot severity at an egg density of 16.7 eggs/ml soil. The results indicated that the presence of SCN can increase severity of root rot caused by F. solani and F. tricinctum and egg density in the soil is an important factor in the interaction.

Funder

North Dakota Soybean Council

United Soybean Board

USDA National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3