Nematode-Suppressive Potential of Digestates to Meloidogyne incognita and Heterodera schachtii

Author:

Liu Ke1,Eberlein Caroline1,Edalati Abdelhossein2,Zhang Ruihong2,Westphal Andreas1ORCID

Affiliation:

1. Department of Nematology, University of California–Riverside, Riverside, CA 92521

2. Department of Biological and Agricultural Engineering, University of California–Davis, Davis, CA 95616

Abstract

Management of plant-parasitic nematodes uses host plant resistance, crop rotation, cultural methods, and nematicide applications. Host plant resistance is tedious to develop, and crop rotation and cultural methods are challenging to use. Environmental and human health concerns render sole reliance on chemical nematode suppression nonsustainable. Previously, digestate from anaerobically fermented maize silage suppressed Heterodera schachtii in Beta vulgaris crops. Here, seven digestates were investigated for nematode suppressive potential: liquid dairy manure digestate (LDMD), liquid dairy manure digestate with ammonia removed (LDMDA), food waste digestate (FWD), liquid food waste digestate with ammonia removed (LFWDA), liquid food waste digestate (LFWD), food waste hydrolysate from the Renewable Energy Anaerobic Digester (HREAD), and food waste hydrolysate from the South Area Transfer Station in Sacramento (HSATS). In a red radish (Raphanus sativus) bioassay with H. schachtii, digestates were amended at rates of 0.02, 0.11, 0.57, and 2.86 ml per 100 cm3 of soil. At a rate of 2.86 ml, all amendments except LDMDA and LFWDA significantly reduced juvenile root penetration compared with the infested control. In a greenhouse watermelon (Citrullus lanatus) bioassay with Meloidogyne incognita, amendments FWD, LFWD, HREAD, and HSATS as well as LDMD (less effectively) at 2.86 and 5.76 ml per 100 cm3 of soil significantly reduced egg masses per root system compared with the nontreated, nematode-infested control. In a microplot experiment with M. incognita and red radish, in the treatment amended with LFWD at 2.37 ml per 100 cm3 of soil, marketable yields were improved by approximately 50% over the nontreated control and were comparable with those in the treatment with the nematicide Reklemel. In a second microplot experiment with M. incognita and watermelon, treatments that contained LFWD at rates of 3.55 ml per 100 cm3 of soil had transient numerical effects of initial nematode suppression that were not maintained throughout the 3-month growth period. The results of these studies demonstrated that digestates FWD and LFWD consistently expressed some nematode-suppressive capacity.

Funder

California Department of Pesticide Regulation

National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3