Investigating the Host Range of the US-22, US-23, and US-24 Clonal Lineages of Phytophthora infestans on Solanaceous Cultivated Plants and Weeds

Author:

Seidl Johnson Anna C.1,Gevens Amanda J.2

Affiliation:

1. Department of Plant Pathology, University of Wisconsin, Madison 53706

2. Department of Plant Pathology, University of Wisconsin-Madison

Abstract

Phytophthora infestans causes late blight, one of the most important diseases of potato and tomato worldwide. Recently in the United States, three newly identified clonal lineages, US-22, US-23, and US-24, have become widespread. While potato and tomato are the most commonly infected solanaceous hosts for P. infestans, new lineages may have a broader or different host range. Under controlled conditions, we determined the host range of isolates representing US-22, US-23, and US-24 genotypes of P. infestans on detached tissues of cultivated solanaceous plants and solanaceous weeds common to the upper midwestern production region. None of the isolates representing the clonal lineages produced late blight symptoms or signs on foliage of selected cultivars of eggplant, pepper, tomatillo, or ground cherry in a detached leaf assay. Symptoms and signs were evident on the potato and tomato cultivars tested, although with the US-24 isolate, infection on tomato was limited. None of the isolates sporulated on the common weed black nightshade, but some sporulation and necrosis was observed with all representatives of the lineages on bittersweet nightshade and petunia. Hairy nightshade supported abundant sporulation and symptoms, and sporangial production was not significantly different than that on tomato for each of the isolates representing the three lineages, indicating the potential for this weed to be a source of inoculum and contribute substantially to late blight epidemics. Interestingly, black nightshade had the highest incidence of sporulation on berries, but the lowest on leaves, suggesting the importance of testing multiple plant organs when determining susceptibility of a species. Our results update knowledge of the host range of the ever-changing P. infestans populations and will help to improve late blight management strategies by targeting these additional hosts.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3