QTL Pyramiding Provides Marginal Improvement in 2NvS-Based Wheat Blast Resistance

Author:

Cruppe Giovana1ORCID,Lemes da Silva Cristiano2,Lollato Romulo P.3,Fritz Allan K.3,Kuhnem Paulo4,D. Cruz Christian5,Calderon Lidia1,Valent Barbara1ORCID

Affiliation:

1. Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A.

2. Corteva Agriscience, Windfall, IN 46076, U.S.A.

3. Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A.

4. Biotrigo Genetica, Passo Fundo, Rio Grande do Sul 99052, Brazil

5. Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A.

Abstract

Wheat blast, caused by the fungus Magnaporthe oryzae Triticum pathotype (MoT), is a devastating disease affecting South America, Bangladesh, and Zambia. Resistance to wheat blast has strongly relied on the 2NvS translocation; however, newer MoT isolates have increased aggressiveness, threatening the 2NvS translocation’s effectiveness and durability. To identify genomic regions associated with wheat blast resistance, we performed a quantitative trait loci (QTL) mapping study using 187 double-haploid (DH) lines from a cross between the Brazilian wheat cultivars ‘TBIO Alvorada’ and ‘TBIO Sossego’, which are moderately resistant and susceptible to blast, respectively. The DH population was evaluated in a greenhouse in Brazil and Bolivia, and field conditions in Bolivia. Contrasting models best explained the relationship between traits evaluated according to differences in disease levels and the presence of the 2NvS. A large effect-locus, derived from ‘TBIO Sossego’, was identified on chromosome 2AS, which was confirmed to be 2NvS translocation and explained 33.5 to 82.4% of the phenotypic variance. Additional significant loci were identified on 5AL, 1DS, 4DS, 5DL, and 6DL chromosome arms with phenotypic variance <6%, but they were not consistent across trait–environment combinations. QTL pyramiding analyses showed that some specific loci had an additive effect when combined with the 2NvS, suggesting that stacking multiple loci may be an effective strategy to help manage wheat blast. The markers associated with the 2NvS can be used as dominant diagnostic markers for this alien translocation. Additional characterization of these loci using a broader set of MoT isolates is critical to validate their effectiveness against current MoT populations.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3