Identity, Pathogenicity, and Genetic Diversity of Lasiodiplodia Species Associated with Stem-End Rot of Avocado in China

Author:

Xu Luxi12,Lan Xiaomei2,Chen Yingying2,He Rui2,Wang Meng12,Zhang Yu12,Liang Xiaoyu12ORCID,Yang Ye12ORCID

Affiliation:

1. School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China

2. Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China

Abstract

Stem-end rot (SER) causes brown necrotic lesions in the pulp near the base of the fruit pedicel and is one of the most devastating postharvest diseases of avocados in all avocado-growing regions of the world. China’s avocado industry is growing very rapidly, and the planting area is expanding, but little is known about the pathogens and genetic diversity of avocado SER. To determine the causal agents of SER, avocado fruits were sampled from the main avocado-producing areas in China during 2020 and 2021. Fungal isolates were obtained from SER symptomatic avocado fruits and identified by morphology combined with phylogenetic analysis of internal transcribed spacer (ITS), translation elongation factor 1-α (EF1-α), and β-tubulin (TUB2) gene sequences. All 101 isolates belonged to Lasiodiplodia spp.; four Lasiodiplodia species were identified, namely, L. pseudotheobromae (59.41%), L. theobromae (24.75%), L. mahajangana (7.92%), and L. euphorbiaceicola (1.98%); and six others are classified as Lasiodiplodia sp. (5.94%). There were only slight morphological differences in colonies and conidia of these four species of Lasiodiplodia. The pathogenicity tests showed symptoms of SER, and 92.08% of the isolates exhibited a high level of virulence on avocado (disease index >70), related to the disease severity on avocado fruits. All tested isolates grew well under the temperature ranging from 23 to 33°C. There was a significant difference in mycelial growth between the four species of Lasiodiplodia after treatment with high or low temperatures. The growth of L. pseudotheobromae was the fastest at 13 to 18°C but was the lowest at 38°C (P < 0.05). The red pigment could be produced by all tested isolates after culturing for 7 days at 38°C. The mycelial growth rate was the fastest on PDA medium, and the slowest on the OMA medium but promoted spore formation (P < 0.05). In addition, the genetic diversity of pathogenic Lasiodiplodia species associated with SER collected from avocado, mango, guava, and soursop fruits was determined. A total of 74 isolates were clustered into four main ISSR groups by the unweighted pair-group method with arithmetic mean analysis, and the classification of this group was related to the host. Extensive diversity was detected in the Lasiodiplodia populations. The diverse geographical origins and host species significantly influenced the population differentiation, and most of the genetic variation occurred within populations (P < 0.001). This is the first study to identify the major pathogens of avocado SER in China, survey their occurrence and pathogenicity, and include a comparative analysis of genetic diversity with Lasiodiplodia spp. causing SER on other fruit hosts. Collectively, the Lasiodiplodia species complex affecting avocado showed high pathogenicity and diversity, while L. pseudotheobromae was the most frequently isolated species in China. The results of this study provide insights into the aspects of the epidemic of SER disease caused by Lasiodiplodia species, which will help in developing strategies for the management and control of SER in avocado.

Funder

Hainan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3