The First Report of Tomato chlorotic spot virus (TCSV) Infecting Long Beans and Chili Peppers in the Dominican Republic

Author:

Almeida M. M. S.1,Orílio A. F.1,Melo F. L.1,Rodriguez R.2,Feliz A.3,Cayetano X.3,Martínez R. T.3,Resende R. O.1

Affiliation:

1. Dept. de Biologia Celular, Universidade de Brasília, Brasil

2. Ministerio de Agricultura, Departamento de Sanidad Vegetal, Santo Domingo, Dominican Republic

3. Instituto Dominicano de Investigaciones Agropecuarias y Forestales - IDIAF, Ensanche Evaristo Morales, Santo Domingo, Dominican Republic

Abstract

The Dominican Republic has a significant area of the country cultivated with vegetables. In July 2013, in the provinces of Moca and La Vega, horticultural crops showed typical tospovirus symptoms (>30% incidence), including bronzing, chlorosis, necrosis, and ring spots on leaves and fruits. Samples were collected from potatoes (Solanum tuberosum), long beans (Vignaun guiculata), chili peppers (Capsicum frutescens), sweet peppers (C. annuum), and tomatoes (S. lycopersicum). Serological tests were clearly positive for infection by Tomato spotted wilt virus (TSWV) and/or related tospoviruses when tested with AgDia immunostrips. The viral RNA extracted from five plants per host was pooled to construct a cDNA library that was sequenced using an Illumina HiSeq 2000 platform. The paired-end reads were assembled using CLC Genomic Workbench version 6.0.3. The assembled contigs were submitted to BLASTx against a viral genome database. The results confirmed the presence of Tomato chlorotic spot virus (TCSV) and TSWV. Then, PCR tests were performed with primers pairs TSWV-LF 5′ CTGTTGTCTATTGAGGATTGTG 3′ AND TSWV-LR 5′ CAGAGAGCTTGTTAATGCAGGAC 3′ to amplify part of the TSWV L RNA, the pairs TCSV-SF 5′ AACTGGGAAAGCAGAAAACC 3′ and TCSV-SR 5′ CCTTACTCCGAACATTGCA 3′, and GRSV-SF 5′ CTGTCAGGAAAATCTTGACCTG 3′ and GRSV-SR 5′ CTTGACTCCAAACATCTCGT 3′ to detect part of the TCSV and Groundnut ringspot virus (GRSV) S segments. In the long bean and chili pepper samples from La Vega, only TCSV was detected (40% of the all samples) based on amplification of the expected size fragment with the S RNA specific primer pair. All the other samples were positive for TSWV and no GRSV was detected. The complete N gene of TCSV and TSWV were amplified using the primer pairs TCSV-NR2 5′ CACACTGAACTGAACTATAACACAC 3′ and TCSV-NF 5′ ACCTTGAATCATATCTCTCG 3′ and primers N-TSWV_FW 5′ TACGGATCCGATGTCTAAGGTTAAGCTCAC 3′ and N-TSWV_RV 5′ TTATCTCGAGTCAAGCAAGTTCTGCGAG 3′. The TCSV N protein sequences (KJ399303 and KJ399304) were 99% identical with the TCSV found in processing tomatoes in the Dominican Republic (1) and the United States (2). The TSWV N protein sequences (KJ399313, KJ399314 and KJ399315) shared 96 to 98% identity with the TSWV N sequences available. Dot blot hybridization tests (1) using DIG-labeled specific TCSV N gene probe confirmed TCSV infection in PCR-positive long bean and chili pepper samples, whereas no hybridization signal was detected for TSWV-infected tomatoes, potatoes, sweet peppers, or healthy samples. In addition, no reassortants were detected based on amplification of the expected size RNA fragments (3). These other amplicons (KJ399301, KJ399299, KJ399302, and KJ399300) showed 98% identity with the L and M segments of TCSV. Thrips collected from symptomatic plants were identified mainly as Frankliniella schultzei, consistent with the main thrips species transmitting TCSV. In the last two years, TCSV was reported in North and Central America and in the Caribbean Basin (1,2,4). These findings have an important epidemiological impact since TCSV represents a new threat to other horticultural crops affected by this tospovirus. References: (1) O. Batuman et al. Plant Dis. 98:286, 2014. (2) A. Londono et al. Trop. Plant Pathol. 37:333, 2012. (3) C. G. Webster et al. Virology 413:216, 2011. (4) C. G. Webster et al. Plant Health Progress. Online publication. doi:10.1094/PHP-2013-0812-01-BR, 2013.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3