Sensitivities of Baseline Isolates and Boscalid-Resistant Mutants of Alternaria alternata from Pistachio to Fluopyram, Penthiopyrad, and Fluxapyroxad

Author:

Avenot H. F.1,van den Biggelaar H.2,Morgan D. P.3,Moral J.4,Joosten M.5,Michailides T. J.3

Affiliation:

1. Department of Plant Pathology, University of California–Davis, Kearney Agricultural Research and Extension Center, Parlier 93648

2. Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands

3. Department of Plant Pathology, University of California–Davis, Kearney Agricultural Research and Extension Center, Parlier

4. Departmento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain

5. Laboratory of Phytopathology, Wageningen University

Abstract

Resistance of Alternaria alternata to boscalid, the first succinate dehydrogenase inhibitor (SDHI) fungicide labeled on pistachio, has become a common occurrence in California pistachio orchards and affects the performance of this fungicide. In this study, we established the baseline sensitivities of A. alternata to the new SDHIs fluopyram, fluxapyroxad, and penthiopyrad and assessed their cross resistance patterns with boscalid. Examination of the effective fungicide concentration that inhibits mycelial growth to 50% relative to the control (EC50) for 50 baseline isolates revealed that the majority were sensitive to boscalid, penthiopyrad, fluopyram, and fluxapyroxad. Analysis of EC50 values for boscalid for 117 A. alternata isolates originating from boscalid-exposed orchards showed that 44, 3, 1, and 69 isolates had sensitive, reduced sensitivity, moderately resistant, and highly resistant boscalid phenotypes, respectively. Molecular investigation of the occurrence of known SDH mutations showed that, among the 69 isolates highly resistant to boscalid, 44, 2, 14, and 1 isolates possessed the mutations leading to the H277Y, H277R, H134R, and H133R amino acid substitutions in AaSDHB, AaSDHB, AaSDHC, and AaSDHD subunits, respectively. Some SDHB or SDHC mutants displayed highly sensitive, sensitive, or reduced sensitivity phenotypes toward penthiopyrad or fluxapyroxad, whereas other had low, moderate, or high levels of resistance to these fungicides. In contrast, all the SDHB mutants were sensitive to fluopyram, while 10, 5, and 1 SDHC mutants had sensitive, reduced sensitivity, and moderately resistant fluopyram phenotypes, respectively. The SDHD mutant had reduced sensitivity to fluopyram and penthiopyrad but was highly resistant to fluxapyroxad. The discrepancies of cross-resistance patterns between SDHIs suggest that their binding sites in complex II may differ slightly and that additional mechanisms of resistance to these compounds are likely involved. Ultimately, the findings of this study should lead to the rational and sustained deployment of new SDHIs in Alternaria late blight spray programs.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3