Epidemiology of Grape Anthracnose: Factors Associated with Defoliation of Grape Leaves Infected by Elsinoë ampelina

Author:

Carisse Odile1,Morissette-Thomas Vincent2

Affiliation:

1. Agriculture and Agri-Food Canada, 430 Gouin Blvd., St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada

2. Department of Mathematics, Sherbrooke University, Sherbrooke, Quebec, Canada, J1K 2R1

Abstract

Anthracnose is a serious disease that affects several grape cultivars. Infected leaves drop prematurely, and severe epidemics result in poor or no yield. Because the factors associated with grape defoliation in vineyards with a history of anthracnose were not well known, this study was undertaken to investigate the relationship between weather-, disease-, and host-related factors and survival of leaves. From 2006 to 2008, weather, anthracnose severity, and leaf emergence were monitored in an unsprayed experimental vineyard naturally infested with Elsinoë ampelina. Each year, two to three times weekly, the number of leaves and the proportion of leaf area diseased (PLAD) were monitored on 10 vines and 2 shoots per vine, for a total of 785 leaves. Survival analysis was used to investigate the factors influencing defoliation and to model time-to-death of grape leaves. Estimated median survival time was 117 to 121 days. Based on Kaplan-Meier estimates of survival probabilities, season type, PLAD per leaf and PLAD per shoot at first assessment, duration and amount of rain at first infection, severity of infection and leaf age at first infection and at first severe infection significantly influenced leaf survival. Based on accelerated time failure modeling, using the Weibull distribution, the most significant variables were PLAD per leaf and PLAD per shoot at first assessment, leaf age at first infection, and duration of rain. Each additional percent increase in PLAD per leaf, in PLAD per shoot, or in rainy days accelerated the time-to-death of grape leaves by 2.84, 1.02, and 0.66%, respectively, whereas for each additional day of leaf age at time of first infection, there was a 2.88% deceleration of the time to death. Results suggested that to avoid premature leaf drop, disease severity should be maintained below 25% leaf area diseased, which can be achieved by sanitation measures designed to reduce inoculum levels and by applying fungicide early in the season to prevent infection of young leaves.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3