Screening Isolates of Soybean mosaic virus for Infectivity in a Model Plant, Nicotiana benthamiana

Author:

Gao L.1,Zhai R.1,Zhong Y. K.1,Karthikeyan A.1,Ren R.1,Zhang K.1,Li K.1,Zhi H. J.1

Affiliation:

1. National Center for Soybean Improvement; Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, P.R. China; National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University, Weigang 1, Nanjing 210095, China

Abstract

Soybean mosaic virus (SMV), belonging to the genus Potyvirus of the family Potyviridae, has a relatively narrow host range almost exclusively confined to leguminous hosts. While disease management through genetic transformation can be an effective approach, soybean remains recalcitrant to routine genetic transformation. In this context, it is important to identify new hosts for SMV that can be used to develop effective transgenic resistance strategies. Transformation in Nicotiana benthamiana is simple and highly efficient; hence, here we demonstrate the infectivity of SMV strain SC7 in N. benthamiana plants. To identify an SMV strain infectious in N. benthamiana, we mechanically inoculated N. benthamiana plants with 37 isolates from 21 (SC1 to SC21) SMV strains. Plants inoculated with isolates of strain SC7 produced mosaic symptoms on leaves. However, N. benthamiana plants inoculated with the 20 other SMV strains showed no visible symptoms. Furthermore, soybean cv. Nannong 1138-2 inoculated with sap prepared from symptomatic N. benthamiana leaves showed typical SMV mosaic symptoms 2 weeks after inoculation. In addition, SMV was detected in symptomatic N. benthamiana and soybean leaves by RT-PCR, DAS-ELISA, and further identified by sequencing. Together, the results indicate that N. benthamiana plants could support multiplication of SMV strain SC7. The findings of this study would be useful for the investigation of SMV resistance using the model plant N. benthamiana.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3