Affiliation:
1. Departamento de Agronomía (Unit of Excellence ‘María de Maeztu’ 2020-24), ETSIAM, Universidad de Córdoba, 14071 Córdoba, Spain
2. Departamento de Fruticultura Mediterránea, IFAPA, Alameda del Obispo, 14004 Córdoba, Spain
Abstract
In 2016, an almond (Prunus dulcis) decline syndrome (ADS) emerged in intensive almond plantations in the Andalusia region (southern Spain), showing branch dieback, gummosis, and general tree decline. The aim of this work was to elucidate the etiology of this disease complex. For this purpose, surveys were conducted across the Andalusia region, and a wide collection of fungi was recovered from wood samples showing gum and internal discoloration. Representative isolates were selected and identified by sequencing ITS, TEF1, TUB, ACT, LSU, and/or RPB2 genes. The following fungal species were identified to be associated with the disease: Botryosphaeria dothidea, Diplodia corticola, Di. seriata, Dothiorella iberica, Lasiodiplodia viticola, Macrophomina phaseolina, Neofusicoccum mediterraneum, N. parvum, N. vitifusiforme, Diaporthe neotheicola, Dia. rhusicola, Dia. ambigua, Eutypa lata, E. tetragona, Eutypella citricola, Eu. microtheca, Fusarium oxysporum s.l., Pleurostoma richardsiae, Phaeoacremonium iranianum, Pm. krajdenii, Pm. parasiticum, and Cytospora sp. All isolates were tested for pathogenicity by inoculating detached or attached almond shoots. Di. corticola and N. parvum were the most aggressive species, showing the largest lesions and most gummosis in attached shoots. The results suggest that the species belonging to Botryosphaeriaceae play a key role in disease development, while the remaining identified species may act as secondary pathogens or endophytes. However, further research to determine the interaction between all these fungal species and other biotic and abiotic factors in the ADS progress is needed.
Funder
Junta de Andalucía
Ministerio de Ciencia e Innovación
Subject
Plant Science,Agronomy and Crop Science