Development of Recombinase Polymerase Amplification Combined with Lateral Flow Detection Assay for Rapid and Visual Detection of Ralstonia solanacearum in Tobacco

Author:

Li Changfeng1,Ju Yuliang2,Shen Pengfei2,Wu Xun2,Cao Le2,Zhou Benguo3,Yan Xiaoming1,Pan Yuemin2ORCID

Affiliation:

1. Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China

2. Key Laboratory of Biology and Sustainable Management of Plant Disease and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, China

3. Institute of Tobacco, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China

Abstract

Bacterial wilt caused by Ralstonia solanacearum is a serious soilborne disease that results in severe losses to tobacco (Nicotiana tabacum) production in China. In this study, a novel RPA-LFD assay for the rapid visual detection of R. solanacearum was established using recombinase polymerase amplification (RPA) and lateral-flow dipstick (LFD). The RPA-LFD assay was performed at 37°C in 30 min without complex equipment. Targeting the sequence of the RipTALI-9 gene, we designed RPA primers (Rs-rpa-F/R) and an LF probe (Rs-LF-probe) that showed high specificity to R. solanacearum. The sensitivity of RPA-LFD assay to R. solanacearum was the same as that in conventional PCR at 1 pg genomic DNA, 103 CFU/g artificially inoculated tobacco stems, and 104 CFU/g artificially inoculated soil. The RPA-LFD assay could also detect R. solanacearum from plant and soil samples collected from naturally infested tobacco fields. These results suggest that the RPA-LFD assay developed in this study is a rapid, accurate molecular diagnostic tool with high sensitivity for the detection of R. solanacearum.

Funder

Key research projects of Anhui Tobacco Company

Key research projects of Guizhou Tobacco Company

Key research projects of Sichuan Tobacco Company

Natural Science Foundation of Anhui Province

Anhui Science and Technology Department Major Project

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3