Standard Area Diagrams for Aiding Severity Estimation: Scientometrics, Pathosystems, and Methodological Trends in the Last 25 Years

Author:

Del Ponte Emerson M.1,Pethybridge Sarah J.1,Bock Clive H.1,Michereff Sami J.1,Machado Franklin J.1,Spolti Piérri1

Affiliation:

1. First, fifth, and sixth authors: Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-000 Brazil; second author: School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva NY, 14456; third author: United States Department of Agriculture–Agricultural Research Service SEFTNRL, Byron, GA 31008; and fourth author: Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900 Brazil.

Abstract

Standard area diagrams (SAD) have long been used as a tool to aid the estimation of plant disease severity, an essential variable in phytopathometry. Formal validation of SAD was not considered prior to the early 1990s, when considerable effort began to be invested developing SAD and assessing their value for improving accuracy of estimates of disease severity in many pathosystems. Peer-reviewed literature post-1990 was identified, selected, and cataloged in bibliographic software for further scrutiny and extraction of scientometric, pathosystem-related, and methodological-related data. In total, 105 studies (127 SAD) were found and authored by 327 researchers from 10 countries, mainly from Brazil. The six most prolific authors published at least seven studies. The scientific impact of a SAD article, based on annual citations after publication year, was affected by disease significance, the journal’s impact factor, and methodological innovation. The reviewed SAD encompassed 48 crops and 103 unique diseases across a range of plant organs. Severity was quantified largely by image analysis software such as QUANT, APS-Assess, or a LI-COR leaf area meter. The most typical SAD comprised five to eight black-and-white drawings of leaf diagrams, with severity increasing nonlinearly. However, there was a trend toward using true-color photographs or stylized representations in a range of color combinations and more linear (equally spaced) increments of severity. A two-step SAD validation approach was used in 78 of 105 studies for which linear regression was the preferred method but a trend toward using Lin’s correlation concordance analysis and hypothesis tests to detect the effect of SAD on accuracy was apparent. Reliability measures, when obtained, mainly considered variation among rather than within raters. The implications of the findings and knowledge gaps are discussed. A list of best practices for designing and implementing SAD and a website called SADBank for hosting SAD research data are proposed.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3