Functional Interactions Between Major Rice Blast Resistance Genes, Pi-ta and Pi-b, and Minor Blast Resistance Quantitative Trait Loci

Author:

Chen Xinglong1,Jia Yulin1ORCID,Jia Melissa H.1,Pinson Shannon R. M.1,Wang Xueyan1,Wu B. M.1ORCID

Affiliation:

1. First and sixth authors: Department of Plant Pathology, China Agricultural University, Beijing, China 100193; and first, second, third, fourth, and fifth authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Dale Bumpers National Rice Research Center (DB NRRC), Stuttgart, AR 72160.

Abstract

Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait loci (QTLs) were investigated in a recombinant inbred line (RIL) population comprising 243 RILs from a Cybonnet (CYBT) × Saber (SB) cross. CYBT has the R gene Pi-ta and SB has Pi-b. Ten differential isolates of four Magnaporthe oryzae races (IB-1, IB-17, IB-49, and IE-1K) were used to evaluate disease reactions of the 243 RILs under greenhouse conditions. Five resistance QTLs were mapped on chromosomes 2, 3, 8, 9, and 12 with a linkage map of 179 single nucleotide polymorphism markers. Among them, qBR12 (Q1), was mapped at the Pi-ta locus and accounted for 45.41% of phenotypic variation while qBR2 (Q2) was located at the Pi-b locus and accounted for 24.81% of disease reactions. The additive-by-additive epistatic interaction between Q1 (Pi-ta) and Q2 (Pi-b) was detected; they can enhance the disease resistance by an additive 0.93 using the 0 to 9 standard phenotyping method. These results suggest that Pi-ta interacts synergistically with Pi-b.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3