Author:
Gabriel Dean W.,Allen Caitilyn,Schell Mark,Denny Timothy P.,Greenberg Jean T.,Duan Yong Ping,Flores-Cruz Zomary,Huang Qi,Clifford Jennifer M.,Presting Gernot,González Enid T.,Reddy Joseph,Elphinstone John,Swanson Jill,Yao Jian,Mulholland Vincent,Liu Li,Farmerie William,Patnaikuni Manjeera,Balogh Botond,Norman David,Alvarez Anne,Castillo Jose A.,Jones Jeffrey,Saddler Gerry,Walunas Theresa,Zhukov Aleksey,Mikhailova Natalia
Abstract
An 8× draft genome was obtained and annotated for Ralstonia solanacearum race 3 biovar 2 (R3B2) strain UW551, a United States Department of Agriculture Select Agent isolated from geranium. The draft UW551 genome consisted of 80,169 reads resulting in 582 contigs containing 5,925,491 base pairs, with an average 64.5% GC content. Annotation revealed a predicted 4,454 protein coding open reading frames (ORFs), 43 tRNAs, and 5 rRNAs; 2,793 (or 62%) of the ORFs had a functional assignment. The UW551 genome was compared with the published genome of R. solanacearum race 1 biovar 3 tropical tomato strain GMI1000. The two phylogenetically distinct strains were at least 71% syntenic in gene organization. Most genes encoding known pathogenicity determinants, including predicted type III secreted effectors, appeared to be common to both strains. A total of 402 unique UW551 ORFs were identified, none of which had a best hit or >45% amino acid sequence identity with any R. solanacearum predicted protein; 16 had strong (E < 10-13) best hits to ORFs found in other bacterial plant pathogens. Many of the 402 unique genes were clustered, including 5 found in the hrp region and 38 contiguous, potential prophage genes. Conservation of some UW551 unique genes among R3B2 strains was examined by polymerase chain reaction among a group of 58 strains from different races and biovars, resulting in the identification of genes that may be potentially useful for diagnostic detection and identification of R3B2 strains. One 22-kb region that appears to be present in GMI1000 as a result of horizontal gene transfer is absent from UW551 and encodes enzymes that likely are essential for utilization of the three sugar alcohols that distinguish biovars 3 and 4 from biovars 1 and 2.
Subject
Agronomy and Crop Science,General Medicine,Physiology