Transcriptome Analysis of the Barley-Fusarium graminearum Interaction

Author:

Boddu Jayanand,Cho Seungho,Kruger Warren M.,Muehlbauer Gary J.

Abstract

Fusarium head blight (FHB) of barley (Hordeum vulgare L.) is caused by Fusarium graminearum. FHB causes yield losses and reduction in grain quality primarily due to the accumulation of trichothecene mycotoxins such as deoxynivalenol (DON). To develop an understanding of the barley-F. graminearum interaction, we examined the relationship among the infection process, DON concentration, and host transcript accumulation for 22,439 genes in spikes from the susceptible cv. Morex from 0 to 144 h after F. graminearum and water control inoculation. We detected 467 differentially accumulating barley gene transcripts in the F. graminearum-treated plants compared with the water control-treated plants. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding defense response proteins, oxidative burst-associated enzymes, and phenylpropanoid pathway enzymes. Of particular interest was the induction of transcripts encoding potential trichothecene catabolic enzymes and transporters, and the induction of the tryptophan biosynthetic and catabolic pathway enzymes. Our results define three stages of F. graminearum infection. An early stage, between 0 and 48 h after inoculation (hai), exhibited limited fungal development, low DON accumulation, and little change in the transcript accumulation status. An intermediate stage, between 48 and 96 hai, showed increased fungal development and active infection, higher DON accumulation, and increased transcript accumulation. A majority of the host gene transcripts were detected by 72 hai, suggesting that this is an important timepoint for the barley-F. graminearum interaction. A late stage also identified between 96 and 144 hai, exhibiting development of hyphal mats, high DON accumulation, and a reduction in the number of transcripts observed. Our study provides a baseline and hypothesis-generating dataset in barley during F. graminearum infection and in other grasses during pathogen infection.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3