Affiliation:
1. Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
2. Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, FL 33031, U.S.A.
Abstract
Root-knot nematodes (RKNs) are harmful plant-parasitic nematodes of tomatoes which can cause significant yield losses. Therefore, there is increasing interest in exploring the application of bacterial nematicides. The bacterium Bacillus methylotrophicus TA-1 is a broad-spectrum biological control agent; however, its effect on RKNs control remains largely unclear. In this study, the toxicity of B. methylotrophicus TA-1 against Meloidogyne incognita was investigated in vitro, and the potential of B. methylotrophicus TA-1 to decrease infection of RKNs in tomato were evaluated in pot and field trials. Results showed that B. methylotrophicus TA-1 exhibited high nematicidal activity against second-stage juveniles (J2s) and eggs of M. incognita with 50% lethal concentration (LC50) values of 5.80 and 7.00 × 108 colony forming units (CFU)/ml, respectively. In the pot experiments and field trials conducted in 2020 and 2021, tomato plants treated with B. methylotrophicus TA-1 soil drench applied once at 3, 6, and 9 × 108 CFU/plant had significantly higher plant height and greater yield compared with the untreated control. Tomato yields of the treated plots with B. methylotrophicus TA-1 in 2 consecutive years’ field trials were between 53.4 to 66.1 and 52.8 to 61.5 t/ha, while they were 49.7 and 48.2 t/ha in the untreated control for each year, respectively. The lowest population densities of M. incognita at 30 and 60 days after treatment were 119 and 135 J2s per 100 g soil in 2020 and 43 and 118 J2s in 2021 in TA-1-treated plots. The lowest gall index of 4.7 and 3.3 in 2020 and 2021, respectively, and the highest yield were all observed in the TA-1 at 9 × 108 CFU/plant treated plants, with no significant differences with the commercial control abamectin. These results provided a basis for further studies of B. methylotrophicus TA-1 formulations, application doses, frequencies, and mechanisms of action, which are necessary before it could be used as a component of integrated management programs to manage RKNs in tomato production.
Funder
Shandong Provincial Natural Science Foundation
Shandong Province Modern Agricultural Technology System Peanut Innovation Team, China
National Natural Science Foundation of China
Subject
Plant Science,Agronomy and Crop Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献