Universal Primers for Rapid Detection of Six Pospiviroids in Solanaceae Plants Using One-Step Reverse-Transcription PCR and Reverse-Transcription Loop-Mediated Isothermal Amplification

Author:

Tseng Yi-Wen1ORCID,Wu Chien-Fu1ORCID,Lee Chia-Hwa12,Chang Chung-Jan13,Chen Yuh-Kun1,Jan Fuh-Jyh124ORCID

Affiliation:

1. Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan

2. PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan

3. Department of Plant Pathology, University of Georgia, Griffin, GA 30223, U.S.A.

4. Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan

Abstract

A number of viruses and viroids infect solanaceous plants causing severe yield losses. Several seed-borne viroids are listed as quarantine pathogens in many countries. Among them, columnea latent viroid, pepper chat fruit viroid, potato spindle tuber viroid, tomato apical stunt viroid, tomato chlorotic dwarf viroid, and tomato planta macho viroid are of major concerns. The objective of this study was to design and test universal primers that could be used to detect six viroids in solanaceous plants using one-step reverse transcription PCR (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). Results revealed that a pair of degenerate primers could be used in a one-step RT-PCR to amplify six pospiviroids from Solanaceae seeds and plants. Moreover, five primers were designed and used in RT-LAMP to amplify six pospiviroids. The minimal concentration of viroid RNA required for a successful detection varied, ranging from 1 fg to 10 ng, depending on the species of viroid and detection method. In general, RT-LAMP was more sensitive than RT-PCR, but both assays were rapid and highly sensitive tools to detect six pospiviroids. Detection methods in use for these viroids require at least two different sets of primers. The assays developed in this research could facilitate the ability to screen a large number of solanaceous plants and seeds intended for import and export.

Funder

Ministry of Science and Technology

Higher Education Sprout Project by the Ministry of Education

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3