Field-Relevant New Sources of Resistance to Anthracnose Caused by Colletotrichum truncatum in a Mungbean Mini-Core Collection

Author:

Pandey Abhay K.12ORCID,Basandrai Ashwani K.3,Basandrai Daisy4,Boddepalli Venkata Naresh1,Rathore Abhishek5,Adapala Gopikrishna5,Nair Ramakrishnan M.1

Affiliation:

1. World Vegetable Center, South Asia, ICRISAT Campus, Patancheru, Hyderabad-502324, TS, India

2. Tea Research Association, North Bengal Regional R & D Center, Nagrakata-735225, West Bengal, India

3. Department of Plant Pathology, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur-176062, Himachal Pradesh, India

4. Department of Genetics and Plant Breeding, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur-176062, Himachal Pradesh, India

5. International Crop Research Institute for the Semi-Arid Tropics, Hyderabad-502324, TS, India

Abstract

Anthracnose is a prevalent disease of mungbean in Asian countries and Sub-Saharan Africa. It is caused by multiple Colletotrichum species. The high levels of anthracnose resistance in mungbean have not been studied in depth in India, but genetic resistance is desired. In this study, we identified the causal agent of mungbean anthracnose in two regions of India as Colletotrichum truncatum through morphological and molecular methods. A set of 296 mungbean mini-core accessions developed by WorldVeg was screened under a natural disease pressure from July to September (kharif season) in 2016, 2017, and 2018 in Hyderabad (a hot spot for anthracnose) to identify anthracnose resistance. Based on disease severity scores, 22 accessions were consistently anthracnose resistant under the categories of immune, highly resistant, and resistant with scores ranging from ≥1.0 to ≤3.0 during the period of study. Furthermore, based on the agronomic performance, anthracnose resistance in Hyderabad, and other desirable traits, a subset of 74 mungbean accessions was selected from 296 mini-core accessions. These accessions were evaluated under natural disease pressure from July to September in 2018 and 2019 in Palampur (another hot spot for anthracnose) to determine the variation in anthracnose resistance. Out of the 74 accessions, two accessions were resistant in 2018; in 2019, one was immune, nine were highly resistant, and 15 were resistant. Combined analysis of variance of 65 accessions common in Hyderabad and Palampur revealed highly significant effects of environment, genotype (accessions), and genotype × environment interaction on the disease severity. The combined GGE biplot analysis of data across years and locations confirmed that the seven accessions MC-24, MC-51, MC-75, MC-127, MC-207, MC-208, and MC-292 were resistant during 2016 to 2018 in Hyderabad, and only in 2019 in Palampur, and the same accessions were moderately resistant in 2018 in Palampur. The seven resistant accessions identified from both test locations could be used as potential donors in the anthracnose resistance breeding program. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3