Insight Into Late Wilting Disease of Cucumber Demonstrates the Complexity of the Phenomenon in Fluctuating Environments

Author:

Philosoph Amit M.12,Dombrovsky Aviv1,Elad Yigal1,Koren Amnon3,Frenkel Omer1ORCID

Affiliation:

1. Department of Plant Pathology and Weed Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion 7528809, Israel

2. The Robert H. Smith Faculty of Agriculture, Food and Environment, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot 761001, Israel

3. Hishtil Nurseries, Nehalim, Israel

Abstract

Some diseases are caused by coinfection of several pathogens in the same plant. However, studies on the complexity of these coinfection events under different environmental conditions are scarce. Our ongoing research involves late wilting disease of cucumber caused by coinfection of Cucumber green mottle mosaic virus (CGMMV) and Pythium spp. We specifically investigated the role of various temperatures (18, 25, 32°C) on the coinfection by CGMMV and two predominant Pythium species occurring in cucumber greenhouses under Middle Eastern climatic conditions. During the summer months, Pythium aphanidermatum was most common, whereas P. spinosum predominated during the winter–spring period. P. aphanidermatum preferred higher temperatures while P. spinosum preferred low temperatures and caused very low levels of disease at 32°C when the 6-day-old seedlings were infected with P. spinosum alone. Nevertheless, after applying a later coinfection with CGMMV on the 14-day-old plants, a synergistic effect was detected for both Pythium species at optimal and suboptimal temperatures, with P. spinosum causing high mortality incidence even at 32°C. The symptoms caused by CGMMV infection appeared earlier as the temperature increased. However, within each temperature, no significant influence of the combined infection was detected. Our results demonstrate the complexity of coinfection in changing environmental conditions and indicate its involvement in disease development and severity as compared with infection by each of the pathogens alone.

Funder

The Chief Scientist of the Ministry of Agriculture and Rural Development, Israel

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3