TaqMan-MGB PCR Method for Rapid Detection of QoI Fungicide Resistance in Chinese Populations of Plasmopara viticola

Author:

Huang Xiaoqing1,Wang Xina1,Zhou Lianzhu1,Kong Fanfang1,Liu Yongqiang1,Wang Zhongyue1,Zhang Hao1ORCID

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China

Abstract

Grape downy mildew caused by Plasmopara viticola is one of the most devastating diseases of grapevine worldwide. Quinone outside inhibitor (QoI) fungicides are commonly used for the control of the pathogen in grape fields across China. However, their recurrent use could lead to the emergence of resistance against these compounds. Based on the most common mutation in resistant isolates, a glycine to alanine substitution at amino acid position 143 (G143A) in the cytochrome b protein, a TaqMan-MGB PCR was developed for the rapid detection of resistance to the QoI fungicide azoxystrobin in P. viticola. Specificity and sensitivity of this method showed it could specifically detect the point mutations linked with QoI resistance in P. viticola, and the detection limit was 0.2 pg. It could also quantify the resistance allele even in isolate mixtures containing as little as 5% QoI-resistant P. viticola strains. With this method, a large P. viticola population (n = 2,373) was screened, and QoI-resistant isolates were identified for the first time in China. The average frequencies of the resistant genotype from eight major-grapevine regions were up to 66%. Taken together, the results not only provide a novel tool for the rapid distinction and quantification of the QoI-resistant allele in P. viticola but also provide important references for fungicide selection and application, which will facilitate resistance management of grape downy mildew and improve grape production systems in Chinese vineyards.

Funder

National Natural Science Foundation of China

China Agricultural Research System

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3